DOI: 10.13957/j.cnki.tcxb.2021.02.001

# 准静态纳米压痕的理论基础与数据分析

龚江宏

(清华大学 新型陶瓷与精细工艺国家重点实验室, 北京 100084)

摘 要:纳米压痕技术已经被广泛地用于在纳米尺度上评价材料的力学性能,而建立于 1992 年的经典 Oliver-Pharr (OP) 方法则是分析纳米压痕实验数据的最常用方法。本文详细介绍了 OP 方法的理论基础及其数据处理技术,并结合纳米压痕 技术在陶瓷材料弹性模量及硬度测试中的应用,对影响 OP 方法测试精度及测试可靠性的各种可能因素进行了分析。
 关键词:纳米压痕;弹性模量;硬度;接触力学;数据分析;陶瓷材料
 中图分类号:TQ174.75
 文献标志码:A
 文章编号:1000-2278(2021)02-0181-65

# Theoretical Foundation and Data Analyses of Quasi-static Nanoindentation

## GONG Jianghong

(Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China)

**Abstract:** Nanoindentation technique has been widely employed to characterize mechanical properties at nanoscale. The traditional Oliver-Pharr (OP) approach established in 1992 is the most commonly adopted method for analyzing nanoindentation data. In the review, the theoretical basis and the data analysis methodology included in OP method were outlined. Then, aiming at the practical applications of nanoindentation in the determination of elastic modulus and hardness of brittle ceramics, the possible factors which may influence the accuracy and the reliability of the OP method were analyzed.

Key words: nanoindentation; elastic modulus; hardness; contact mechanics; data analysis; ceramic materials

0 引言

众所周知,力学性能对于评价材料在工程结 构方面的适用性及其服役行为具有极为重要的意 义。过去的 100 多年中,已经发展并使用了一系 列的标准试验方法用以测试材料的力学性能,其 中,最常用的测试方法大致可以分为两大类<sup>[1]</sup>: 一类是在简单应力状态下进行的试验,如单轴拉 伸、压缩和扭转等,这类试验可以获得材料的强 度、断裂韧性、弹性模量等基本性能参数;另一 类则是在复杂应力状态下进行的试验,如局部压 入试验(硬度试验),主要用于表征材料抵抗局部 变形的能力。

从 20 世纪 90 年代初开始,一种新型的力 学性能试验方法即纳米压痕技术<sup>[2]</sup> (Nano-indentation Technique) 开始逐渐引起人们的重

**收稿日期:** 2020–12–12。 **修订日期:** 2021–01–10。 **通信联系人:** 龚江宏(1965–),男,博士,副教授。 视,并迅速得到了广泛的应用。从图 1 可以看出, 1992 年以来,科学引文索引 (Science Citation Index, SCI) 每年收录的纳米压痕技术相关论文 数量逐年攀升,其中,发表在陶瓷类期刊上的论 文从 2004 年开始也逐渐增多。截止到 2019 年底, 与纳米压痕技术相关的 SCI 论文已经接近 25000 篇,而在陶瓷类期刊上发表的也接近 1000 篇。

纳米压痕试验方法的具体测试过程为:将一 个具有规则形状的刚性压头在逐渐增大的外力作 用下压入待测试样表面,在外力(或位移)达到一 个预定的峰值后再逐渐卸除外力;在这一加载-卸载过程中,借助于高精度载荷-位移测试技术同 时记录压头位移 h 及压头所承受的载荷 P;对所 获得的 P-h 曲线进行分析即可得出待测试样的弹 性模量和硬度。

Received date: 2020–12–12.Revised date: 2020–01–10.Correspondent author: GONG Jianghong (1965–), Male, Ph.D.,Associate professor.E-mail: gong@tsinghua.edu.cn



图 1 1992 年以来每年发表的纳米压痕技术相关论文数量 (数据源自 Web of Science) Fig. 1 Number of the papers concerning nanoindentation technique published in each year since 1992 (Data from Web of Science)

由于这一技术基于高精度位移测试,文献中 有时也称之为深度敏感压痕技术(Depth-Sensing Indentation Technique, DSI);又由于这一技术需要 借助于高精度位移及载荷测试装置,文献中有时 又称之为仪器化压痕技术(Instrumented Indentation Technique, IIT)。

图 2 示出了一条典型的纳米压痕 P-h 曲线。 图中除了用圆点符号表示出了实验所获得的位移--载荷数据之外,还标出了对这些实验数据进行分 析以导出待测试样弹性模量和硬度所需的基本参 数,包括:峰值载荷 P<sub>max</sub>、峰值位移 h<sub>max</sub>、初始 卸载斜率(接触刚度) S、最大接触深度 h<sub>c</sub>以及最 终压痕深度 h<sub>f</sub>。这些参数的物理意义将在下文中 陆续加以介绍。



图 2 典型的纳米压痕 P-h 曲线 (未公开发表数据) Fig. 2 Typical P-h curve obtained from nanoindentation experiment. Data measured on silica glass with a prescribed P<sub>max</sub> of 30 mN, a loading time of 30 s and a holding time of 10 s (unpublished data)

纳米压痕技术中采用较多的加载方式是准静态加载方式,即采用一定的加载速率对压头施加 单调增大的载荷至预先确定的最大值 *P*<sub>max</sub>,而后 再以一定的卸载速率卸载。采用这一加载–卸载方 式进行的纳米压痕试验通常称为准静态纳米压痕 试验(Quasi-Static Nanoindentation Tests)。此外, 也可以在准静态加载信号上叠加一个相对较高频 率(较为常用的频率为 45 Hz)的简谐力,通过测量 压头的简谐响应实现接触刚度 *S* 的连续测定<sup>[2,3]</sup>。 这一测试方法称为连续刚度测试技术(Continuous Stiffness Measurements, CSM),有时也称为动态纳 米压痕技术(Dynamic Nanoindentation Technique)。

迄今为止,由图2所示 P-h曲线导出待测试 样弹性模量和硬度的数据分析方法基本上是针对 卸载阶段的数据进行的,即:假定卸载阶段的载 荷-位移关系满足一个特定的函数关系,通过对实 验数据进行拟合分析获得该特定函数关系中的待 定参数,进而确定初始卸载斜率 S,再由初始卸 载斜率确定弹性模量和硬度。这一数据分析过程 所依据的理论基础由 Oliver 和 Pharr 于 1992 年建 立<sup>[2]</sup>, 文献中一般称之为 Oliver-Pharr 方法 (OP 方法)。OP 方法经过一定程度完善<sup>[4]</sup>后成为了国 际标准 ISO 14577-1-2015<sup>[5]</sup>中推荐的数据处理方 法。目前,各类商业化纳米压痕仪中配置的标准 数据处理软件也都是以 OP 方法为基础构建的。 对于实际测试者来说,只需要按要求准备好试样, 在纳米压痕仪上设置好相关参数进行试验,即可 直接获得所需的弹性模量和硬度数值。

然而,需要指出的是,在某些情况下由数据 处理软件计算得到的结果并不可靠,这是因为大 量研究已经表明,OP方法中仍然存在有诸多影响 测试精度的因素,而纳米压痕仪配置的标准数据 处理软件并不可能考虑到所有的因素。图 3 示出 了一个典型的例子<sup>[6]</sup>:采用不同厂商的纳米压痕 仪在不同的峰值载荷下测试了熔融石英的弹性模 量和硬度值;图中4个区域分别对应于4个不同 的峰值载荷 (数值示于图中),每个区域内的各个 数据点分别由不同的纳米压痕仪测得,其中,深 色的数据点为人工根据 OP 方法计算得到的结果, 而浅色的数据点则是纳米压痕仪的标准数据处理 软件给出的结果。显然,人工方法得到的结果不 受所用的纳米压痕仪种类影响,基本表现为一个 常数; 而数据处理软件给出的结果则明显与纳米 压痕仪种类有关。因此,在需要获得精确实验结 果的情况下,尤其是在对纳米压痕实验技术进行 理论分析或改进的相关研究中,有必要对实验测 得的 P-h 曲线进行仔细分析,以发现并尽可能消 除诸多因素所可能导致的误差。本文便是基于这 一基本考虑而撰写的。



图 3 不同纳米压痕仪测得的熔融石英弹性模量及硬度值 (深色符号:人工处理所得结果;浅色符号:软件处理 所得结果)<sup>[6]</sup>

Fig. 3 Elastic modulus and hardness of the fused silica measured with different nanoindenters (dark symbols: results from manual analysis; bright symbols: outputs of the software)<sup>[6]</sup>

本文将首先对纳米压痕技术的发展历史进行 简要回顾,详细介绍 OP 方法所涉及的具体数据 处理过程,而后就影响 OP 方法测试精度的几个 主要因素展开深入讨论。

在展开本文的论述之前,有几点需要说明:

(1)纳米压痕技术自从诞生以来,其应用领域不断拓宽。目前,纳米压痕技术已经被广泛应用于金属材料<sup>[7]</sup>、陶瓷材料<sup>[8,9]</sup>、高分子材料<sup>[10,11]</sup>、生物材料<sup>[12,13]</sup>等块体材料、涂层和薄膜<sup>[14-16]</sup>等二维材料以及晶须<sup>[17,18]</sup>、纤维<sup>[19,20]</sup>、颗粒<sup>[21,22]</sup>等一维或零维材料的性能测试。除了可以测试材料的弹性模量和硬度之外,纳米压痕技术在断裂韧性<sup>[23]</sup>、应力-应变曲线<sup>[24,25]</sup>、蠕变与疲劳<sup>[26,27]</sup>、粘附性<sup>[28]</sup>等性能表征方面也发挥出了独特的作用。为便于展开讨论,本文所涉及的内容将主要针对纳米压痕试验技术在陶瓷块体材料弹性模量和硬度测试中的应用。当然,由于资料限制,所引用的文献报道实验数据并不局限于陶瓷材料。

(2) 尽管连续刚度测试技术逐渐被越来越多的研究所采用,但由于简谐力频率、振幅等的变 化可能会对测试结果产生一定程度的影响,导致 所测得的性能参数存在一定程度的误差<sup>[29-31]</sup>,因 此,更多的研究仍然采用准静态压痕技术。本文 的论述也将主要围绕准静态压痕技术展开。

(3) 在纳米压痕的理论研究及纳米压痕技术 的实际应用中使用了各种不同形状的压头,包括 正四棱锥形 Vickers 压头、三棱锥形 Berkovich 压 头、球形压头以及一些其他特殊形状的压头等, 其中 Berkovich 压头<sup>[32]</sup>是最为常用的一种(见补 充材料的图 S1)。张泰华和杨业敏<sup>[33]</sup>曾经就如何 在实际测试中合理选择压头几何形状的问题进行 过分析,本文不再重复。除非特别说明,本文的 讨论将主要针对 Berkovich 压头展开;同样,除 非特别说明,所涉及的实验数据也均为 Berkovich 压痕实验所测得。

(4) 目前,适用于高温下操作的纳米压痕技术得到了迅速的发展<sup>[34-36]</sup>,高温纳米压痕技术也已经得到了越来越多的应用<sup>[37-39]</sup>。受篇幅限制,本文将不涉及到纳米压痕技术的高温应用,感兴趣的读者可以阅读一些已经公开发表的综述<sup>[40,41]</sup>。

# 1 Oliver-Pharr 方法产生背景

#### 1.1 接触力学的几项代表性工作

纳米压痕技术所依据的理论基础是弹性接触 力学<sup>[42]</sup>。

弹性接触问题早在 19 世纪中叶前后就开始 得到了研究,其中,具有重要意义的两项代表性 研究分别是 Hertz 于 1882 年发表的一篇经典性 论文<sup>[43]</sup>以及 Boussinesq 于 1885 年出版的一部经 典性著作<sup>[44]</sup>。Boussinesq <sup>[44]</sup>着重研究了一个刚性 轴对称压头压入一个弹性体的过程中所导致的应 力场和应变场分布;在这一工作中所提出的方法 后来被普遍应用于计算各种形状压头 (如圆柱形 压头或圆锥形压头)导致的应力场和应变场。而 Hertz <sup>[43]</sup>针对具有不同半径和不同弹性模量的两 个球形表面之间的接触问题所提出的经典解则成 为了当前接触力学领域许多实验研究和理论研究 的重要基础。

早在纳米压痕技术被广泛认可并得到普遍 应用之前,上述两项工作就已经作为脆性材料压 痕断裂力学的重要理论基础而在陶瓷材料力学 性能评价表征中发挥出了积极的作用。Hertz 本 人在后续工作中最早发现了接触微开裂现象<sup>[45]</sup>, 此后,关于球形压头接触形变及微开裂的理论 分析一直是压痕断裂力学研究的中心内容之 对纳米压痕技术产生积极影响的一项接触力 学研究是由 Sneddon<sup>[49]</sup>于 1965 年报道的。在这 项研究中, Sneddon 针对一系列具有规则形状的 压头压入一个各向同性的均匀弹性半空间问题推 导出了载荷、位移以及接触面积之间的关系。根 据 Sneddon 的分析,对于任意一个具有规则形状 的压头,在受力压入弹性体表面的过程中,压头 所承受的载荷 P 与压头位移 h 之间的关系可以用 式(1)表示<sup>[49]</sup>:

$$P = \alpha h^m \tag{1}$$

式中的  $\alpha$  和 m 为常数,取决于压头形状,与 被压入的弹性体的性质无关。对于圆柱形压头, m=1;对于圆锥形压头,m=2;对于球形压头, 在小位移条件下 m=1.5;而对于一个回转抛物面 形压头 (Paraboloid of Revolution),m=1.5。

上面所提到的三项代表性研究都是针对纯弹 性体展开的。也就是说,在压头压入试样表面的 过程中,试样相应发生的形变是纯弹性的;当加 在压头上的载荷完全撤除后,试样表面的形变将 完全恢复,不留下任何永久性的压痕形变。然而, 在对实际材料进行的压痕试验中,完全的纯弹性 是几乎不可能发生的。可以想象,在一个实际的 压痕试验过程中,在压头与材料刚刚发生接触时, 材料表面与压头的接触点处将产生应力集中效 应,高度的局部应力集中不可避免会导致材料发 生一定程度的局部塑性形变。常规的硬度或显微 硬度测试就是利用材料表面上由于这一塑性形变 所导致的压痕来确定材料硬度的。塑性形变的存 在使得对实际材料接触力学行为的分析变得尤为 复杂。因为在弹-塑性接触问题中,本构方程是非 线性的,包括屈服强度、加工硬化系数等指标在 内的一些材料性能参数需要在建立本构方程时加 以考虑,以尽可能准确地描述材料对压痕的响应。 在这种情况下通常很难直接得出问题的分析解。 相应地,目前关于弹-塑性接触问题的力学研究更 多的是基于实验或有限元模拟来进行。

关于弹-塑性接触问题力学研究较早的一项 代表性工作是上世纪 40 年代由 Tabor<sup>[50]</sup>报道的。 在这项工作中, Tabor 研究了一些金属材料在球 形压头作用下的变形行为。紧接着, Tabor 和他 的合作者<sup>[51]</sup>又进一步研究了金属材料在圆锥形 压头作用下的变形行为。这些工作中所观察到的 一个有趣现象是:对于球形压头的情况,当加在 压头上的载荷完全撤除之后,材料表面上形成的 压痕保持为球形,只不过球形压痕的半径比压头 的半径稍大一些;而对于圆锥形压头的情况,当 加在压头上的载荷完全撤除之后,材料表面上形 成的压痕保持圆锥形,只不过圆锥形压痕的锥角 比压头的锥角稍大一些。如果仅仅局限于对这些 实验现象的观察, Tabor 团队的这些工作应该说 并没有什么太大的价值;这些工作的价值实际上 在于 Tabor 团队基于这些实验现象所进行的理论 分析。球形压痕的半径大于球形压头半径以及圆 锥形压痕的锥角大于圆锥形压头锥角,说明在压 痕试验的卸载过程中压痕形状发生了变化:在与 压头的接触点处,材料沿载荷作用方向发生了一 定程度的弹性恢复。这就为弹性接触力学理论应 用于弹-塑性接触问题提供了一条可行的思路。 Tabor 等人在他们的工作<sup>[50, 51]</sup>中发现,无论是对 于球形压头还是对于圆锥形压头,卸载阶段的载 荷-位移关系以及卸载之后材料所发生的弹性恢 复量都与压痕尺寸以及材料的弹性模量之间存在 一定的联系。事实上,这就已经勾勒出了现代纳 米压痕技术的雏形。前面我们已经提到:由图2 所示 P-h 曲线导出待测试样弹性模量和硬度的 数据分析方法基本上是针对卸载阶段的数据进 行的。

Tabor 等人的工作中其他一些重要的发现包 括<sup>[50, 51]</sup>: (1) 对于圆锥形压头,材料表面上圆形 压痕的半径在卸载阶段并没有发生明显变化,弹 性恢复仅仅是发生在压痕的深度方向;(2) 通过 对材料表面同一位置进行同一最大载荷水平反复 多次的加载-卸载之后测定的 *P-h* 曲线呈现出良 好的可重复性,也就是说对于已经形成了塑性压 痕的位置用相同载荷进行压痕试验,材料相应发 生的形变基本上表现为纯弹性。这些发现初步奠 定了现代纳米压痕技术的实验基础。

顺便指出,在 Tabor 等人的工作中首次提出 了"折合模量(Reduced Modulus)"这一概念。在 经典弹性接触力学中,压头被假定为理想刚性, 即在与试样的接触过程中压头不会发生形变。但 是,理想刚性的材料显然是不存在的。为了考虑 压头变形的影响,Tabor 等人认为用于建立本构 方程的弹性模量应该用折合模量取代;折合模量 的 *E*<sub>r</sub>定义如式(2)<sup>[51]</sup>:

$$\frac{1}{E_{\rm r}} = \frac{1 - v^2}{E} + \frac{1 - v_{\rm I}^2}{E_{\rm I}}$$
(2)

式中, E 和 v分别为试样的弹性模量和泊松 比, E<sub>1</sub>和 v分别为压头的弹性模量和泊松比。

#### 1.2 弹性模量与接触刚度的关系

需要说明的是, Tabor 等人的上述工作是在显 微尺度上进行的,毕竟在那个年代也不可能实现 纳米尺度上位移的准确量测。从某种意义上说, Tabor 等人的工作应该是深度敏感压痕技术(DSI) 的一个开端。而把深度敏感压痕技术实用化进程 大大向前推进一步的代表性工作则是在 20 世 纪 70 年代初期由一批前苏联学者完成的<sup>[52, 53]</sup>。 在这些工作中,研究者使用可以在加载过程中同 时记录载荷-位移关系的显微硬度试验机获得了 如图 2 所示的 P-h 曲线,并首次提出材料的弹性 模量可以借助于式(3)通过初始卸载斜率 S 而获得:

$$S = \left(\frac{\mathrm{d}P}{\mathrm{d}h}\right)_{h=h_{\mathrm{max}}} = \frac{2}{\sqrt{\pi}} E_{\mathrm{r}} \sqrt{A} \tag{3}$$

式中, A 为压头与材料接触区域的投影面积。

式(3)的理论基础事实上就是前面提及的 Sneddon 的工作<sup>[49]</sup>。这个公式最初是针对纯弹性 条件圆锥形压头的情形推导得到的, Buylchev 等 人<sup>[53]</sup>的分析发现这个公式对于球形压头或圆柱 形压头情形也同样适用, 而且他们还进一步推测 式(3)应该适用于其他各种不同形状的压头。

式(3)就是通过分析纳米压痕实验数据获得 弹性模量的主要理论依据。尽管在 Snedden 的工 作中,参数 S 被称为接触刚度,但在实际的纳米 压痕测试中往往采用初始卸载斜率(即卸载曲线 在峰值位移处的斜率)作为接触刚度,因此,下文 中我们将主要采用初始卸载斜率这个术语,只是 在一些特定的情况下才提及接触刚度。

在 Buylchev 等人<sup>[53]</sup>的工作之后,随着关于纳 米压痕实验技术研究的不断进步,一系列关于式 (3)适用性的理论研究相继出现。几项具有代表性 意义的工作分别是:

(1) 1992年, Pharr 等人<sup>[54]</sup>发现式(3)适用于任何一种可以处理为一个光滑函数的旋转体的压头 类型。

(2) 1997年, Cheng 和 Cheng <sup>[55]</sup>指出, 对于 任意具有轴对称性的压头, 式(3)不仅适用于纯弹 性接触的情况, 对弹-塑性接触情况也同样适用。 这一研究对于应用式 (3) 分析实际材料的弹-塑 性压痕响应具有重要的意义。

(3) 2006 年, Fu<sup>[56]</sup>进一步通过理论推导证实, 在压头尖端出现钝化效应的情况下,式(3)也仍然 适用于描述接触刚度 *S* 与接触面积 *A* 之间的关 系。这一研究的意义在于:由于机械加工精度的 限制,几乎所有压头的尖端处都不可能是完全理 想尖锐状态<sup>[57]</sup>;进而,在压头后续的使用过程中, 反复的压入有可能导致压头尖端发生进一步的钝 化<sup>[58]</sup>。Fu 的工作便是在考虑这个实际情况的基础 上开展的。

Hays 和 Pharr 根据有限元分析发现,考虑到 三棱锥形 Berkovich 压头缺乏轴对称性可能导致 的误差,在纳米压痕实验数据分析中使用式 (3) 时通常需要增加一个修正因子 β,如式 (4)<sup>[59]</sup>:

$$S = \frac{\mathrm{d}P}{\mathrm{d}h} = \beta \frac{2}{\sqrt{\pi}} E_{\mathrm{r}} \sqrt{A} \tag{4}$$

修正因子  $\beta$  与压头的半锥角  $\psi$  以及压痕试 样的泊松比 $\nu$  有关。对于 Berkovich 压头,修正 因子  $\beta$  的近似分析解如式 (5):

$$\beta = \pi \frac{\frac{\pi}{4} + 0.1548 \cot \psi \frac{1 - 2\nu}{4(1 - \nu)}}{\left(\frac{\pi}{2} - 0.8312 \cot \psi \frac{1 - 2\nu}{4(1 - \nu)}\right)^2}$$
(5)

需要指出的是,在式(3)中引入修正因子的 做法早在 Hay 和 Pharr 的工作之前就已经出现了。 King<sup>[60]</sup>在采用数值方法研究非圆形截面平板状 压头对弹性接触刚度的影响时首次提出了修正因 子的概念:对于正方形截面平板状压头, $\beta$  = 1.012; 对于三角形截面平板状压头, β=1.034。 后一个数值后来在分析由 Berkovich 压头测得的 纳米压痕实验数据中得到了广泛的采用。之后, Vlassak 和 Nix<sup>[61]</sup>采用一种更精确的分析方法对 三角形截面平板状压头进行了类似的数值分析, 得到  $\beta = 1.058$ 。考虑到纯弹性体与弹-塑性体在 压痕响应方面存在的差异, Hendricks<sup>[62]</sup>提出了另 一种估计 $\beta$ 值的方法,并计算得到了 Berkovich 压头的 β 值为 1.0226。此后, 更多的研究则是 采用有限元方法对影响 β值的各种因素进行分 析<sup>[63-65]</sup>。这些研究发现,除了压头形状本身之外, 压痕试样的的泊松比v、弹性模量 E 与屈服强度  $\sigma_{vs}$ 的比值  $E/\sigma_{vs}$ 、加工硬化指数等都将影响到  $\beta$ 的取值。不同的研究工作给出的  $\beta$  值各不相同, 但一个共同的结论是:对于 Berkovich 压头,  $\beta$  值 应略大于1。

考虑到实际材料的泊松比取值范围,由式(5) 得到的  $\beta$  值大致处于 1.0226-1.0850 之间。Oliver 和 Pharr 认为:  $\beta = 1.058$  应该是一个比较合适的 选择,这一数值可能导致弹性模量测试值的偏差 控制在± 0.05 范围内。

## 1.3 纳米压痕实验技术发展历史

从式(4)可以看出,通过分析纳米压痕数据获 得材料力学性能需要首先确定两个基本参数:一 是初始卸载斜率(或称为接触刚度)S,二是接触面 积 A。对所有影响纳米压痕测试精度的因素进行 的分析都主要围绕这两个参数的准确确定展开。

早在 20 世纪 80 年代初期,学者们就已经意 识到了深度敏感压痕技术在测定薄膜以及材料表 面力学性能方面具有非常重要的作用,并开始尝 试研制并使用一些在亚微米尺度上进行压痕实验 的设备[66,67]。在常规的硬度或显微硬度测试中, 所需观测的压痕尺寸大致在微米级别甚至毫米级 别,借助于光学显微镜即可进行。但是,当压痕 尺寸减小到亚微米尺度之后,对压痕尺寸 (接触 面积) 的测量就变得尤为困难, 需要一种间接的 手段。这时,通过分析压痕过程 P-h 曲线确定接 触面积的想法开始产生了<sup>[68,69]</sup>。注意到如图2所 示,压痕过程中压头的最大压入深度 hmax 和压头 完全卸载后材料表面塑性压痕的最终深度 hf 可以 从 P-h 曲线上直接获得。Oliver 等人<sup>[69]</sup>借助于扫 描电镜(Scanning Electron Microscope, SEM)或透 射电镜(Transmission Electron Microscope, TEM) 观察测定真实接触面积A,然后将测试结果与P-h 曲线上确定的  $h_{\text{max}}$  或  $h_{\text{f}}$  相联系,建立起一个由 hmax 或 hf直接确定 A 的关系式(即所谓的面积函 数),从而实现了接触面积的间接测试。

很显然,面积函数的精度不仅依赖于扫描电 镜或透射电镜的测试精度,与压痕尺寸的量测精 度也有密切关系。不仅 P-h 曲线的测试精度会在 很大程度上影响到面积函数的精度,通过 hmax 或 h<sub>f</sub> 计算接触面积是否合理也需要进一步的实验验 证。至少有一点是很清楚的: P-h 曲线上的位移 h 是压头在外加载荷作用下发生的位移,这个位 移除了包括压头实际压入材料表面的深度之外, 还应该包括其他因素引起的位移变化。一般的情 形如图 4 所示: 当压头在外力作用下压入材料表 面后, 压头的位移 h 至少由两部分构成, 一部分 是压头与材料直接接触区域的深度(即接触深 度)h,另一部分则是接触区域外部附近区域的材 料表面发生的一定程度的弹性形变,即材料表面 向内部发生沉陷(Sink-in),这部分位移记为  $h_s$ , 如式(6):

$$h = h_{\rm s} + h_{\rm c} \tag{6}$$

当压头完全卸载后,塑性区周围受压的弹性 基体将发生一定程度的恢复,从而导致最终的压 痕残余深度 h<sub>f</sub>小于 h<sub>c</sub>。

因此,无论是采用 h<sub>max</sub> 还是采用 h<sub>f</sub>计算接触 面积 A 都将不可避免地导致一定程度的误差,而 如何从 P-h 曲线上准确确定出压头实际压入材料 表面的深度 (即接触深度) h<sub>c</sub> 则成为了后续研究 的一个焦点。



#### 图 4 完全加载及完全卸载条件下压痕表面轮廓及分析所 需相关位移参数示意图<sup>[2]</sup>

Fig. 4 Surface profiles of an indentation at full loading and after completely unloading. Also shown are different displacement parameters used for analysis<sup>[2]</sup>

由 Doerner 和 Nix 报道的一项工作<sup>[70]</sup>再一次 把注意力集中到了如图 2 所示的 P-h 曲线上。他 们希望结合已有的接触力学理论,对 P-h 曲线的 卸载部分进行分析,以期获得对接触深度 h。的准 确确定。Doerner 和 Nix 首先注意到这么一个实验 现象:采用 Berkovich 压头或者 Vickers 压头对不 同材料进行试验时,所得到的压痕 P-h 曲线卸载 部分的初始阶段都近似表现为线性,这与纯弹性 接触条件下圆柱形压头的行为极为相似。将 P-h 曲线卸载部分的初始阶段线性外推至P = 0可以 得到一个位移值  $h_p$ 。从图 2 大致可以看出,  $h_p$ 的 大小介于 hmax 和 hf之间。如果假定对于 Berkovich 压头或者 Vickers 压头来说, 卸载过程的弹性变 形行为与纯弹性体在圆柱形压头作用下的变形行 为等效,那么这个位移值 h,应该可以近似为接触 深度 hc。近似确定了 hc之后,即可根据压头的几 何形状计算出接触面积 A,进而得到材料的硬度 H, 如式(7):

$$H = \frac{P_{\text{max}}}{A} \tag{7}$$

而如果把 *P-h* 曲线卸载部分初始线性阶段的 斜率近似视为接触刚度 *S*,则弹性模量即可通过 式 (4) 计算得到。在 Doerner 和 Nix 的工作中第 一次提出了一个近似确定接触刚度 *S* 的方法:在 高载荷端取卸载曲线的三分之一部分进行线性拟 合,所得到的直线斜率即为 *S*。 图 5 所示为 Doerner-Nix 工作中获得的一个 实验结果。图中纵坐标接触面积 A 是采用 TEM 对材料表面压痕进行直接量测而得到的结果,横 坐标接触深度则是采用上述方法对卸载曲线的线 性部分外推得到的 *h*<sub>p</sub>。实验所用的材料为牌号 METGLAS<sup>®</sup>2826 的一种黄铜 (α-brass)。这个实 验结果中有两个重要的特征需要加以注意:

(1) 图中的虚线是根据压头的几何形状计算 得到的理想情况下接触面积随接触深度的变化关 系。实验结果与理论值之间存在偏差,这一偏差 随着接触深度的增大而逐渐减小;在接触深度足 够大的情况下,二者间的偏差几乎可以忽略不计。 导致这一偏差的原因有两个:一是 hp 与真实接触 深度 hc之间存在偏差;二是实际的压头(尤其是 压头尖端处)几何形状与理想状态存在偏差。前 者显然是应该存在的,这点我们在后续的讨论中 将可以看到,后者显然也是存在的,前面我们曾 经提到,由于机械加工精度的限制,几乎所有压 头的尖端处都不可能是完全理想尖锐状态<sup>[57]</sup>。

(2) 所有的实验点都落在一条光滑曲线上或 在其附近,这说明接触面积与接触深度之间应该 存在确定的函数关系。我们将在下文中指出,这 一点对于后续的研究具有很重要的参考意义。事 实上,在下面即将正式讨论的 OP 方法中,这个 函数关系被称为面积函数。





with the contact depth  $(h_p)$  determined by analyzing the unloading data <sup>[70]</sup> 顺便说明一点, Doerner-Nix 的工作<sup>[70]</sup>中将 图 5 中实验数据变化规律近似处理为一个二次多 项式,这一点对于后续的工作也是十分有益的。

Doerner-Nix 方法一个最重要的贡献是将实际材料的压痕卸载行为与纯弹性体的加载行为结合起来。这一方法中所蕴含的一个重要假设是: 在压痕的卸载阶段,材料所发生的形变是纯弹性的(弹性恢复)。而这一重要假设则意味着可以应 用已有的弹性接触力学理论对实际材料的压痕卸载行为进行描述,从而建立起准确确定材料力学 性能(主要是弹性模量和硬度)的纳米压痕试验 技术。目前普遍采用的纳米压痕数据处理方法就 是在这一基础上发展出来的。

在结束本章讨论之前,还有必要简单提及 Page 等人<sup>[71]</sup>于 1992 年初报道的一项工作。这项工 作可能是最早提出"纳米压痕(Nanoindentation)" 这个概念的少数几项工作之一。在这项工作中, Page 等人对 Al<sub>2</sub>O<sub>3</sub>、SiC、Si 等陶瓷单晶进行了系 统的纳米压痕实验,在论文的最后列出了多达 12 条结论。作为一项全景式的研究,这项工作基本 奠定了纳米压痕技术的应用基础:此后出现的 关于陶瓷材料纳米压痕研究的绝大多数内容 (如弹性恢复、残余压痕原位观察、位错成核、 塑性起始、结构致密化、位移突进、压痕微开 裂等等)在这项工作中都可以找到相关的描述。 从某种意义上说,这项工作应该是下文中即将提 及的 Pliver-Pharr 经典工作的一个序曲。

# 2 Oliver-Pharr 方法的理论基础

1992年,Oliver和Pharr在Journal of Materials Research 发表了一篇论文<sup>[2]</sup>,全面系统地提出了 一套用于纳米压痕实验数据分析的方法。12年 后,Oliver和Pharr于2004年再次在Journal of Materials Research上就这一方法的发展和完善发 表了一篇综述性论文。这两篇论文构成了后来得 到普遍应用的Oliver-Pharr方法,文献中通常简称为OP方法。

本章将结合这两篇经典性论文详细介绍 OP 方法的基本内容。

#### 2.1 实验细节及卸载曲线的特征

前面提到, Doerner-Nix 方法中所蕴含的一个 重要假设是:在压痕的卸载阶段,材料所发生的 形变是纯弹性的 (弹性恢复)。Oliver-Pharr 的工 作首先就对这一假设进行了实验验证。 这里我们需要特别强调一点:对于在纳米尺度上进行的纳米压痕实验,实验条件的选择及精细控制是保证测试精度及可靠性的一个关键因素。因此,在对 Oliver-Pharr 的实验结果进行分析之前,有必要说明一下 Oliver-Pharr 工作中所采用的实验条件<sup>[2]</sup>:

(1) 仪器

所采用的纳米压痕仪载荷和位移的测量精度 分别为 0.3 μN 和 0.16 nm。应该说这样的精度水 平还是比较低的,与目前常用的商用纳米压痕仪 测试精度相比至少低了一个数量级。例如,Agilent 公司的 G200 型纳米压痕仪的载荷和位移测量精 度分别为 50.0 nN 和 0.01 nm<sup>[72]</sup>。

(2) 压痕试验过程

如图 6 所示,试样首先在一个恒定的加载速 率条件下反复加载--卸载 3 次,每一次卸载都终止 于最高载荷 P<sub>max</sub>的 10%左右。这一反复加载--卸 载的目的之一在于保证压头与试样之间保持接 触,但更重要的目的则是观察卸载阶段形变的可 逆性,以保证后续卸载过程中的形变尽可能为纯 弹性。

在第三次加载-卸载之后,将载荷固定在 10%P<sub>max</sub>水平并保荷一段时间(图 6),同时记录 位移的变化情况以分析热膨胀导致的测试系统位 移变化,即所谓的热漂移(Thermal Drift)。下文 中将提到,尽管系统的热漂移可以维持在一个极 低的水平,但在某些情况下对测试结果的影响却 是极为显著的。

之后,对压头重新加载至 P<sub>max</sub>,并在 P<sub>max</sub>水 平下保荷 100 s,之后再次卸载。在 P<sub>max</sub>水平下



保荷 100 s 的目的是进一步使各种与时间有关的 不可逆形变的影响降到最低程度。

(3) 材料及其他实验参数

Oliver-Pharr 工作中使用了 6 种材料,分别为:单晶金属铝 (Al)、单晶金属钨 (W)、普通钠钙玻璃、熔融石英、单晶石英和单晶蓝宝石 (氧化铝 Al<sub>2</sub>O<sub>3</sub>)。

对于每一种材料,分别选择名义 P<sub>max</sub>为 0.5 mN、1.5 mN、4.4 mN、13.3 mN、40.0 mN 和 120.0 mN 进行试验。对应每一个 P<sub>max</sub>分别进行了 5 次 压痕试验。

图 7 示出了部分实验结果。以卸载行为的特征区分,这些实验结果大致可以分为三类<sup>[2]</sup>:

(1) 对于单晶石英 [图 7 (a)]、单晶氧化铝 (蓝宝石) [图 7 (b)] 和熔融石英 [图 7 (c)] 这三种 材料,反复加载--卸载没有导致 P-h 曲线卸载部 分发生明显的变化。也就是说,在经历了第一次 加载、材料表面形成了一个新的压痕表面之后, 对这个压痕表面进行加载和卸载不会导致进一步 的塑性形变发生。这些结果显然说明:在压痕的 卸载阶段,材料所发生的形变是纯弹性的。

(2) 对于钠钙玻璃 [图 7 (d)], 卸载曲线与重 新加载过程得到的曲线构成了一个滞后回线 (hysteresis loop), 似乎说明材料在卸载阶段发生 了一定程度的塑性形变 (或其他类型的不可逆形 变)。但是, 在经过了 3-4 次加载--卸载循环之后, 钠钙玻璃的卸载行为也基本表现为弹性。

(3) 金属 Al [图 7 (e)] 和金属 W [图 7 (f)] 则 表现出了另一类完全不同的卸载行为:每一次的 卸载和重新加载过程都导致了峰值位移的持续增 大。为了更好地显示这一特征,将图 7 (e)中对 应于位移为 4300 nm-4800 nm 的局部区域示于图 8。可以看出,每一次卸载后重新加载至 *P*<sub>max</sub> 后 均出现了一个位移瞬间增大的现象 (注意如图 6 所示,在第一次和第二次重新加载时,在载荷峰 值处并没有保荷,而是直接卸载)。本文将在后续 章节中对这一现象进行解释。

#### 2.2 卸载曲线的数学描述

Doerner-Nix 方法<sup>[70]</sup>中假定在卸载阶段初期 载荷与位移之间呈线性关系,进而取卸载曲线上 端 1/3 区域进行线性回归确定初始卸载斜率作为 接触刚度 S。但是,在如图 7 所示的所有情况下, 这样的线性关系似乎并不存在。为了更好地说明 这一点,图 7 所示所有曲线上的最后一次卸载 所对应的数据一并示于图 9,图中的横坐标为(h-



Fig. 7 Nanoindentation *P*-*h* curves of different materials <sup>[2]</sup>



in Figure 7 (e) for aluminum<sup>[2]</sup>

 $h_{\rm f}$ ,其中, $h_{\rm f}$ 为直接从 *P*-*h*曲线上读取的完全卸载 (*P* = 0)时的位移值。仔细观察这些曲线可以 看出,在各种情况下载荷 *P*与位移 *h*之间均不存 在线性关系。

而将图 9 所示数据重新绘制在双对数坐标中则可以发现 (见图 10),压痕卸载数据似乎更适合于采用一个幂函数加以描述,如式 (8):

$$P = \alpha (h - h_{\rm f})^m \tag{8}$$

式中, $\alpha$ 、m和  $h_f$ 均为待定参数,需要通过 回归分析确定。

这里尤其需要指出的是,虽然在绘制图 9 和 图 10 时采用了直接从实验测得的 P-h 曲线上读



#### 图 9 最后一次卸载阶段载荷与位移的关系

(以 P<sub>max</sub> = 120 mN 为例)<sup>[2]</sup>

Fig. 9 Load versus displacement of the final unloading segment  $(P_{\text{max}} = 120 \text{ mN as an example})^{[2]}$ 





取的 h<sub>f</sub>,但是在实际对卸载数据按式(8)进行回归 分析时,式(8)中的三个参数α、m 和 h<sub>f</sub>均应视为 待定参数。也就是说,对卸载数据按式(8)进行回 归分析涉及了一个反复迭代过程。一般做法是: 首先,根据 P-h 曲线估计 h<sub>f</sub>的大致取值范围;而 后,通过系统调整 h<sub>f</sub>的取值,以使回归分析得到 一个最小的标准误差。

对图 10 所示各组数据按照式(8)进行回归分 析所得到的结果列于表 1。在各种情况下,拟合 的相关系数均几乎接近于 1,说明式(8)可以很好 地描述纳米压痕卸载数据。

#### 2.3 等效压头形状

幂函数关系的存在为应用已有的弹性接触理 论分析纳米压痕数据奠定了基础。前面已经提到, Sneddon<sup>[49]</sup>对各种具有规则形状的压头进行的力 学分析表明,纯弹性体压痕过程中的载荷-位移关 系可以用一个幂函数形式的通式加以描述。 Oliver-Pharr 的工作<sup>[2]</sup>又发现,实际材料压痕卸载

表 1 不同材料纳米压痕卸载数据按式(8)拟合得到的结果<sup>[2]</sup> Tab. 1 Parameters describing power law fits of the

| Material        | $\alpha / mN \cdot nm^m$ | т    | Correlation coefficient |  |  |
|-----------------|--------------------------|------|-------------------------|--|--|
| Aluminum        | 0.2650                   | 1.38 | 0.999938                |  |  |
| Quartz          | 0.0215                   | 1.43 | 0.999985                |  |  |
| Soda-lime glass | 0.0217                   | 1.37 | 0.999997                |  |  |
| Sapphire        | 0.0435                   | 1.47 | 0.999998                |  |  |
| Fused silica    | 0.0500                   | 1.25 | 0.999997                |  |  |
| Tungsten        | 0.1410                   | 1.51 | 0.999986                |  |  |

阶段材料的形变基本表现为弹性,且卸载阶段的 载荷-位移关系服从幂函数关系。接下来的问题就 是: Sneddon 的工作中所考虑的均为具有轴对称 性的压头,包括圆柱形、圆锥形和回转抛物面形 等。实际纳米压痕实验中常用的压头如 Berkovich 压头并不具有轴对称性,无法直接应用 Sneddon 的分析结果。因此,需要对 Berkovich 压头进行 一些必要的等效处理。

在 Sneddon 考虑的各类压头中,圆锥形压头 与 Berkovich 压头在形状上最为接近:首先,二者 的横截面面积均与压入深度的平方成正比;其次, 二者均具有一个尖锐的尖端。回转抛物面形压头 在小位移条件下接近于一个球形压头,考虑到实 际 Berkovich 压头的尖端总是不可避免地存在一定 程度的钝化,因此也有可能与回转抛物面形压头 具有相似的载荷-位移关系。注意到 Sneddon 的分 析给出,圆锥形压头载荷-位移关系的指数为 *m* =2.0,回转抛物面形压头载荷-位移关系的指数为 *m* =2.0,回转抛物面形压头载荷-位移关系的指数则 为*m*=1.5。表1所列出的*m*值在 1.25-1.51 之间波 动,平均值为 1.40。在 1992 年发表的工作<sup>[2]</sup>中, Oliver 和 Pharr 建议将 Berkovich 压头等效处理为 一个回转抛物面形压头。

为了说明表 1 所列实验获得的 m 值表现出的 因材料不同而变化的现象及其与回转抛物面形压 头的 m 值之间存在的差异, Pharr 和 Bolshakov<sup>[73]</sup> 提出了一个"等效压头形状"的概念。这一概念 来源于对半锥角为 70.3°的圆锥形压头压入弹塑 性体表面的有限元分析。如图 11 (a) 所示,在加 载阶段,材料同时发生弹性形变和塑性形变,压 痕表面与压头表面之间保持紧密接触,压痕形状 完全由压头形状决定。然而,在卸载阶段,压痕 表面将会由于弹性恢复的出现而发生一些变化。 考虑到弹–塑性失配导致的弹–塑性界面上的应 力随着离开样品表面的距离增大而增大,并在与 压头尖端的接触点处达到最大值,因此,卸载阶 段的弹性恢复将导致压痕表面表现为稍稍弯曲为 球面的形状,如图 11 (b)所示。这种稍稍弯曲为 球面的形状将使得在对压头重新加载的过程中, 压头与材料之间的接触面积逐渐增大。由于压痕 表面的这种形状变化是纯弹性的,因此,在后续 的加载-卸载过程中发生的形变完全可逆,但是 由这压痕表面这一形状变化所导致的接触面积 变化对卸载过程的载荷-位移关系无疑将会产生 一定程度的影响。

上述有限元分析结果也得到了实验的进一步 验证<sup>[4]</sup>。采用 Berkovich 压头在熔融石英表面压制 了一个压痕之后,采用原位扫描成像技术获得了 残余压痕的三维形貌,结果如图 12(a)所示。垂直 于压痕一个表面并通过其相对棱边的横截面上 压痕的剖面图示于图 12 (b),图中两条额外画出的直线用于凸显剖面的弯曲程度。

如图 11 和图 12 所示的现象揭示了实际压痕 表面与 Sneddon 工作中所考虑的纯弹性平整表面 之间存在的差异,这也是导致压痕实验获得的 *m* 值与理论值之间产生偏差的主要原因。为了进一 步说明这一点,Pharr 和 Bolshakov<sup>[73]</sup>对"等效压 头形状"进行了定量分析。如图 11(b)下半部分所 示,有效压头的形状由残余压痕的形状确定,可 以用函数 *Z* = *u*(*r*) 加以描述,其中*r* 为离开接触 区域中心位置的径向距离,*u*(*r*) 为在*r* 处圆锥形 压头与压痕表面之间的距离。在已知压痕表面形 状的条件下可以写出函数 *u*(*r*) 的具体形式。有限 元分析结果表明,等效压头形状可以近似描述为 式(9)的形式:

$$Z = Br^n \tag{9}$$



图 11 "等效压头形状"概念示意图[73]

Fig. 11 Schematic representation of the concept of "effective indenter shape" [73]



图 12 熔融石英表面 Berkovich 压痕形貌: (a) 三维形貌; (b) 剖面形貌<sup>[4]</sup> Fig. 12 Topographic images of a Berkovich indentation in fused silica: (a) complete 3D image, (b) cross section through an edge and the opposing face with straight lines included to accentuate the curvature <sup>[4]</sup>

式中, *B*和 *n* 为待定的拟合参数。*n* 值取决于 材料性能, 一般在 2-6 之间变化。有限元模拟进 一步指出, *n* = 2 时的等效压头形状相当于一个回 转抛物面。这就很好地解释了为什么实际材料在 刚性的圆锥形压头作用下的变形行为会与在一个 回转抛物面形压头或者球形压头作用下纯弹性体 的变形行为十分相似。

对于由式(9)所描述的刚性轴对称压头与一个弹性半空间之间的接触问题, Sneddon 的工作中也得出了一个载荷-位移关系, 如式 (10):

$$P = \frac{2E_{\rm r}}{\left(\sqrt{\pi}B\right)^{1/n}} \left(\frac{1}{n+1}\right) \left[\frac{\Gamma\left(\frac{n}{2} + \frac{1}{2}\right)}{\Gamma\left(\frac{n}{2} + 1\right)}\right]^{1/n} h^{1+1/n} \quad (10)$$

式中的 Γ 即 Γ 函数。将式 (10) 与式 (8) 比较可以得到式 (11):

$$m = 1 + \frac{1}{n} \tag{11}$$

由于n值取决于材料性能且在2-6之间变化, 由式(11)可知:描述纳米压痕卸载数据的幂函数指数m也取决于材料性能,且在1.2-1.5之间 变化。这一结果与表1所列实验结果取得了一致。

"等效压头形状"概念提出之后得到了一些 具体应用。例如, Schwarze<sup>[74]</sup>将这一概念用于确 定压痕应力场, Schwarze<sup>[75]</sup>和 Herrmann 等人<sup>[76]</sup> 将这一概念推广到了薄膜/基体体系。此外, Merle 等人<sup>[77]</sup>还设计了一个在卸载过程中连续监测刚 度的实验,进一步从实验上证实了"等效压头形 状"概念。

#### 2.4 面积函数的标定

"有效压头形状"概念的引进很好地解释了 实验测定的m值表现出的两个特征,即:材料依 赖性以及与回转抛物面形压头理论值之间的偏 差。同时,这一概念也清楚地揭示了一个事实: 压痕过程中压头与材料之间的真实接触面积与直 接根据压头几何形状确定的理论值之间存在有一 定的偏差,这就使得在应用式(4)进行弹性模量计 算时面临着一个如何确定真实接触面积的问题。

事实上,确定真实接触面积的问题我们在第 一章的讨论中已经涉及到:上世纪 80 年代初; Oliver 等人的工作<sup>[69]</sup>中采用 SEM 或 TEM 直接在 试样表面量测接触面积,并试图将其与 P-h 曲线 上读取的  $h_{max}$  或  $h_f$ 联系起来以建立一个面积函 数;同样的处理方法在 Doerner–Nix 工作<sup>[70]</sup>中也 得到了应用,只不过 Doerner–Nix 工作中采用的 位移值是将卸载曲线线性外推至 P = 0 所得到的  $h_{po}$ 

将接触面积与接触深度  $h_c$ 联系起来的函数称 为面积函数 (Area Function)。无论是 Oliver 等人 采用的  $h_{max}$  或  $h_f$ , 还是 Doerner 和 Nix 采用的  $h_p$ , 多少都带有一定的经验性质,都不是真实的接触 深度。从图 4 可以看出,  $h_{max}$  实际上包括了材料 表面沉陷所导致的额外位移,  $h_f$  则明显小于真实 的接触深度;相比于  $h_{max}$  或  $h_f$ , Doerner 和 Nix 确定的  $h_p$  似乎更接近真实接触深度,但将卸载 曲线线性外推从本质上说仍然只是一个经验的 方法。

在实现了对卸载曲线的定量描述之后,就有 了确定真实接触深度 h<sub>c</sub>的理论方法。根据 Sneddon 的工作<sup>[49]</sup>,压痕过程中材料表面的沉陷 h<sub>s</sub>可以由式(12)给出:

$$h_{\rm s} = \varepsilon \frac{P}{S} \tag{12}$$

式中,  $\varepsilon$  是一个仅由压头几何形状决定的常数。理论分析表明<sup>[49]</sup>:对于圆柱形压头(m = 1),  $\varepsilon = 1$ ;对于圆锥形压头(m = 2),  $\varepsilon = 0.72$ ;对于回转抛物面形压头(m = 1.5),  $\varepsilon = 0.75$ 。

结合式(6)和式(12)即可确定接触深度 h<sub>c</sub>,如式 (13):

$$h_{\rm c} = h_{\rm max} - \varepsilon \, \frac{P_{\rm max}}{S} \tag{13}$$

尽管实验发现 Berkovich 压头的 *m* 因材料 不同而在 1.2-1.5 之间变化(表 1), Oliver 和 Pharr<sup>[2]</sup> 认为在 Berkovich 纳米压痕实验数据分析中取 $\varepsilon$  = 0.75 是较为合适的。

式(13)中的接触刚度 *S*则可以直接处理为卸载阶段的初始卸载斜率,如式 (14):

$$S = \left(\frac{\mathrm{d}P}{\mathrm{d}h}\right)_{h=h_{\mathrm{max}}} = \alpha m (h_{\mathrm{max}} - h_{\mathrm{f}})^{m-1}$$
(14)

由式(4)可以看出,如果折合模量  $E_r$ 已知且不随压头压入深度而变化,接触面积 A 可以借助于接触刚度 S 直接计算得到,而式(13)表明,接触 深度也是接触刚度 S 的函数。Oliver 和 Pharr 对前述 6 种材料的纳米压痕数据按这方法进行了分析,得到了接触面积随接触深度的变化关系,如图 13 所示。在根据式(4)计算接触面积时, $E_r$ 值采用的是文献报道的各材料弹性模量值;金刚石压头的弹性模量为 $E_I$ =1141 GPa, $v_I$ =0.07。可以看出, $A = h_c$ 之间确实存在一个特定的函数关系,而且该函数关系似乎与材料无关。进而,

Oliver 和 Pharr 又采用 SEM 分别直接量测了试样 表面残余压痕的面积,将测量结果与计算结果进 行了对比,发现计算值与测量值之间吻合得非常 好 (图 14)。



图 13 接触面积计算值随接触深度的变化关系<sup>[2]</sup> Fig. 13 Calculated contact area as a function of contact depth<sup>[2]</sup>





顺便指出,图 13 所示的规律与 Doerner-Nix 工作中得到的结果(图 5)极为相似,只不过后者中 横坐标采用的是经验方法确定的 *h*<sub>p</sub>值,而前者采 用的 *h*<sub>c</sub>则是建立在较为严格的理论分析基础上。

根据如图 13 和图 14 所示的实验结果,Oliver 和 Pharr<sup>[2]</sup>建立了一个间接标定接触面积的方法。 因为图 13 所示结果表明面积函数与材料几乎无 关,因此,对于任意一个压头,可以使用弹性模 量已知的材料进行压痕实验,测定不同载荷下的 接触刚度 *S*,由式(13)确定接触深度 *h*<sub>c</sub>,由式(4) 确定接触面积 *A*,进而建立起 *A* 与 *h*<sub>c</sub>之间的函数 关系。这就是所谓的面积函数标定。

Oliver 和 Pharr 认为,为了获得精确的面积函

数,面积函数的标定必须借助于已知弹性模量的 各向同性均质材料进行。所谓"已知弹性模量的 各向同性均质材料"称为标准样品,类似于常规 显微硬度测试中使用的标准硬度块,目前商用的 纳米压痕仪均配备有不同材质的标准样品,最常 用的标准样品材质为熔融石英 (*E* = 72 GPa, *v* = 0.17)。

通过对实验结果的拟合分析,Oliver和Pharr 提出了面积函数的一个通用形式,如式(15):

$$A = \sum_{i=0}^{8} C_i (h_c)^{2-i} = C_0 h_c^2 + C_1 h_c^1 + C_2 h_c^{1/2} + C_3 h_c^{1/4} + \dots + C_8 h_c^{1/128}$$
(15)

式中的 C<sub>0</sub>、C<sub>1</sub>、…、C<sub>8</sub>为待定参数,可以通 过曲线拟合得到。

选择式(15)所示函数形式的初衷是使之能在 很宽的范围内对数据进行拟合,而并不刻意追求 其所蕴含的物理意义。事实上,这个函数的第一 项就是 Berkovich 压头 (*C*<sub>0</sub> = 24.5)或者圆锥形压 头的理论接触面积。式(15)中的第二项则考虑了回 转抛物面的影响,在压入深度很小的情况下, Berkovich 压头的尖端可以近似处理为一个半径为 *R*的球形。式(15)的后续各项则是用于描述压头尖 端的实际几何形状与理想状态之间的偏差程度。

采用准静态压痕实验技术,每一条 P-h 曲线 只能获得一个对应于 P<sub>max</sub>的接触刚度,面积函数 的标定需要进行大量的实验才能完成。因此,面 积函数的标定目前通常采用连续刚度实验进行<sup>[4]</sup>。 在本文序言中已经提到,连续刚度实验可以实现 在加载过程对接触刚度的实时测定,这样就相当 于通过一次加载过程就可以直接获得不同接触深 度下的接触刚度。一般说来,因为标准样品具有 非常好的均匀性,如果采用连续刚度实验进行面 积函数标定,通常只需要约 30 个在最大载荷作用 下的压痕实验数据就足够了<sup>[1]</sup>。

考虑到在纳米尺度上每一个压头的端部都存 在着一定程度的尺寸差异,而且在使用过程中压 头端部也会因为频繁的接触摩擦而产生不同程度 的磨损,因此,建议在每一次测试之前 (至少在 经历了若干次使用之后)采用标准样品对压头的 面积函数进行一次标定。

#### 2.5 弹性模量和硬度

确定了接触面积之后,弹性模量 E 和硬度 H 即可以分别通过式(4)及式(7)计算得到。对于 Oliver 和 Pharr 考虑的 6 种材料, 计算结果总结于 图 15 中。

必须注意的是,由式(4)计算得到的是折合弹 性模量,而材料的弹性模量则需要进一步借助于 式(2)加以确定。表 2 中列出了计算弹性模量所用 的各种材料的泊松比。从图 15(a)可以看出,纳米 压痕实验测试结果表现出了很微弱的载荷依赖 性。在整个测试范围内,可以近似地认为所测得 的弹性模量基本保持为常数。表 2 中同时给出了 在两个最大的测试载荷(40 mN 和 120 mN)水平下 得到的各种材料弹性模量平均值。金属 Al、W 以 及钠钙玻璃、熔融石英的测试值与文献报道值之 间的偏差在4%以内,说明纳米压痕方法应该可 以测得较为合理的弹性模量值。对于单晶石英和 蓝宝石, 纳米压痕实验结果与文献报道值之间的 偏差显得有点大:单晶蓝宝石的偏差约为 9%, 而单晶石英的偏差高达约30%。这可能是因为这 两种单晶本身显著的各向异性特性导致的。压痕 过程中,各个方向均发生了变形,因此,Oliver 和 Pharr<sup>[2]</sup>认为: 压痕方法测得的弹性模量可能应 该是一个不同晶轴方向弹性模量的平均值。

从图 15(b)可以看出,对于四种非金属材料, 纳米压痕实验测得的硬度值在整个测试范围内 基本保持不变,仅表现出极其微弱的载荷依赖 性。两种金属材料的硬度值随载荷的增大则表 现出较为明显的降低趋势。这是可以理解的。硬 度是一个与测试方法和测试所用的载荷有关的 物理量。测试载荷对硬度测试结果的影响通常较 为显著,这种影响通常称为硬度的压痕尺寸效应 (Indentation Size Effect)<sup>[78,79]</sup>。一般来说,金属硬 度的压痕尺寸效应比陶瓷、玻璃等非金属材料更 为显著。

#### 2.6 关于 OP 方法基本假设的质疑

从本章的介绍中可以看出,OP方法中至少存在4个基本假设<sup>[80]</sup>:(1)弹-塑性压痕的卸载过程是一个纯弹性过程;(2)对于非刚性的点压头(如圆锥形压头或棱锥形压头),需要采用折合模量*E*r代替弹性模量*E*以考虑压头发生的弹性形变;(3)压头从一个凹陷的压痕表面上的卸载行为与在一个未变形的平整面上的卸载行为是一样的;(4)三棱锥形Berkovich压头(或四棱锥形Vickers压头等)的压入行为与圆锥形压头压入行为是一样的。



### 图 15 纳米压痕实验测得的 (a) 弹性模量及(b)硬度<sup>[2]</sup> Fig. 15 (a) Elastic modulus and (b) hardness measured with nanoindentation test <sup>[2]</sup>

#### 表 2 纳米压痕方法测定的弹性模量与文献报道值的对比<sup>[2]</sup> Tab. 2 Comparison of the elastic moduli with the values reported in the open literature <sup>[2]</sup>

| Materials       | Nanoindentation | Literature values    |                 |  |
|-----------------|-----------------|----------------------|-----------------|--|
|                 | modulus / GPa   | Elastic modulus/GPa  | Poisson's ratio |  |
| Aluminum        | $68.20\pm0.93$  | 70.40                | 0.347           |  |
| Quartz          | $124.00\pm0.54$ | 95.00 (c-axis:105)   | 0.077           |  |
| Soda-lime glass | $69.90\pm0.22$  | 70.00                | 0.230           |  |
| Sapphire        | $441.00\pm4.70$ | 403.00 (c-axis: 499) | 0.234           |  |
| Fused silica    | $69.30\pm0.39$  | 72.00                | 0.170           |  |
| Tungsten        | $410.00\pm4.70$ | 409.80               | 0.280           |  |

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

对上述 4 个基本假设提出的质疑主要来自英国 剑桥大学的学者 M. Munawar Chaudhri。 Chaudhri 认为,从严格意义上说,上述 4 个基本 假设对于弹-塑性压痕行为都是不成立的。文献 [80] 较为详细地列举了这一说法的理论和实验依据。当然,Chaudhri 的这些观点还有待进一步的 理论和实验加以证实或者证伪,毕竟 OP 方法目 前已经得到了普遍的认可。这里我们只针对第一 个基本假设做一些简要的讨论。

第一个基本假设在 Oliver 和 Pharr 的原始实 验工作中就有所反映。如图 7 (d) 所示的钠钙玻 璃实验结果中,反复卸载-加载循环导致 P-h 曲 线构成了一个滞后回线,似乎说明材料在卸载阶 段发生了一定程度的塑性形变 (或其他类型的不 可逆形变)。

Chaudhri<sup>[80]</sup>采用显微压痕实验观察了 MgO 单晶在加载和卸载过程中的变形行为。观察发现, 在加载阶段载荷增大至 5.0 N时,样品表面观察 到了位错滑移带和微裂纹,图 16(a)中箭头标出了 最外缘的滑移带位置。图 16(b)所示则为在载荷增 大至峰值 10.5 N时的样品表面形貌,滑移带出现 的区域以及微裂纹尺寸都明显增大。完全卸载之 后的样品表面形貌如图 16 (c) 所示,与图 16(b) 相比可以发现,在卸载阶段仍然形成了新的滑移 带,而裂纹尺寸也进一步增大。这些观察表明压 痕的卸载阶段确实发生了一定程度的塑性形变。

Shuman 等人<sup>[81]</sup>的工作则从另一个侧面间接 证实了卸载阶段塑性形变的存在。他们对几种材 料分别进行了反复加载--卸载的纳米压痕实验,分 别将卸载数据和卸载后重新加载数据按式(8) 进行拟合,而后采用 OP 方法计算得到了弹性模 量。图 17 示出了部分实验结果。可以看出,对于 熔融石英,由卸载数据得到的弹性模量值(实心 符号)与由卸载后重新加载数据得到的结果 (空 心符号) 几乎没有差别,而对于电解铜,二者间 的差异则极为明显。电解铜卸载过程和重新加载 过程结果的不一致至少说明卸载阶段的变形应该 不是纯弹性的。

因此, Oliver 和 Pharr<sup>[2]</sup>建议通过反复多次的 卸载-加载循环来消除塑性形变的影响,此后 Chudoba 和 Ritcher<sup>[82]</sup>又进一步建议通过延长在 峰值载荷(或峰值位移)下的保荷时间以消除所有 与时间有关的形变过程对卸载曲线的影响。对于 绝大多数多晶陶瓷来说,本征的脆性决定了其在 压痕过程中的塑性形变程度较小,一般情况下, 卸载阶段即使发生了塑性形变,对最终结果的影 响也应该是极其微弱的。

# 3 载荷-位移曲线

从前面对 OP 方法进行的介绍中可以发现, 纳米压痕实验数据的处理涉及到两个关键环节: 一是通过分析载荷-位移曲线的卸载部分获得初 始卸载斜率作为接触刚度 S,进而计算出接触深 度 h<sub>c</sub>; 二是采用标准样品标定面积函数 A。这两 个关键环节中的任何一个如果引进了较大的误 差都将最终影响到弹性模量和硬度测试结果的 可靠性。

本章将对影响载荷-位移曲线及接触刚度确 定的各种主要因素进行分析,下一章则把注意 力主要集中于面积函数对性能测试精度的影响 问题。

#### 3.1 纳米压痕仪的校准

Oliver-Pharr 工作<sup>[2]</sup>中一个值得关注的细节 是:采用式(8)所示的幂函数对纳米压痕卸载数据 进行拟合得到的相关系数均在 0.9999 以上(表 1)。



图 16 Vickers 压痕实验过程不同阶段 MgO 单晶试样表面形成的滑移带<sup>[80]</sup> Fig. 16 In-situ photographs of the slip bands formed around a Vickers indentation on a well-polished single crystal MgO (111)<sup>[80]</sup>





Fig. 17 Elastic moduli of fused silica and electrolytic copper determined using the unloading (solid) and reloading (open) data obtained with nanoindentation tests<sup>[81]</sup>

可以想象,在纳米尺度上进行的测量,在载荷和 位移的测量精度分别仅为 0.3 μN 和 0.16 nm 的条 件下,任何一点微小的测试误差都可能导致曲线 拟合的相关系数大幅度减小。因此,表1 所示无 疑是一个令人叹为观止的拟合结果。要获得如此 高精度的实验数据,除了需要相当高超的操作技 术和极其丰富的操作经验之外,纳米压痕仪本身 的校准也是十分重要的因素。

对纳米压痕实验数据测试精度产生影响的仪器自身因素包括载荷传感器、位移传感器等量测组件的精度之外,还有在操作过程中出现的一些问题,如接触零点、机架柔度、热漂移等<sup>[83,84]</sup>。这里我们简要分析一下机架柔度和热漂移对实验数据的影响。

在接触零点准确确定的前提下, 仪器位移传 感器的测量结果理论上包括压头的压入深度和仪 器自身在相对参考平面上的变形两部分。后者主 要来源于两方面:一是在受力下测试机架自身发 生的弹性变形,二是测试系统中空气流动、温度 波动导致的热漂移。

在实际的纳米压痕测试中,热漂移校准的作 用在于修正位移测量过程中支架、压头和试样的 热膨胀或收缩。考虑到每一次测试过程中测试系 统的空气流动和温度波动情况都各不相同,热漂 移校准一般都是在测试过程中同时进行的,一般 的做法是: 在测试的卸载阶段, 当载荷将至最大 载荷的10%时保荷100s。在这个保荷过程中, 位移会随着时间的延续发生持续的变化,如图 18(a)所示。对这些位移--时间数据进行线性回归 即可得到热漂移为0.31 nm/s。之后,根据这一漂 移率对实验测得的 P-h 曲线上所有位移数据进行 修正,即可得到准确的 P-h 曲线,结果如图 18(b) 所示。这个修正过程已经以程序形式固化在商用 纳米压痕仪的数据处理软件包中,每一次测试时 仪器将自动完成热漂移校准。也就是说,纳米压 痕仪最终到到的位移数据事实上已经经过了热漂 移修正。

显然不能在任何情况下都绝对相信仪器。按 照上面所描述的热漂移校准方法,校准过程是在 测试即将结束时进行的。如果考虑在测试过程中 温度发生较为显著变化这么一个极端情况,不难 想象在测试的加载阶段和卸载阶段热漂移率应该 不一样,用测试即将结束时的热漂移率修正加载 阶段的位移值显然就会导致一定程度的误差。当 然,上述的低端情况在实际测试较为少见。更为 普遍存在的问题是,如图 18(a)所示的位移--时间 数据并不一定在每一次测试中都表现为良好的线 性关系,这就使得通过线性回归获得的热漂移率 只能是一个较为粗糙的估计值。



图 18 熔融石英纳米压痕试验中的热漂移校准:(a) 恒定载荷作用下位移随时间的变化关系; (b) 热漂移修正前后的载荷-位移曲线<sup>[1]</sup>



也有研究<sup>[85]</sup>发现,由卸载至 10% *P*max 保荷时 确定的热漂移率表现出了对材料及实验参数的依 赖性。一些典型的例子示于图 19 和图 20。图 19 所考虑的材料包括三种块体材料 (熔融石英、 BK7 玻璃和金属 W) 和四种涂层材料:(1) M2 钢 基体上厚度为 1.3 μm 的类金刚石 (Diamond-Like Carbon, DLC) 涂层;(2) 镍基体上厚度为 0.9 μm 的 Al<sub>2</sub>O<sub>3</sub>涂层;(3) BK7 基体上厚度为 1.1 μm 的 金属 Al 涂层;(4) 镍基体上厚度为 1.2 μm 的金属 Cu 涂层。从图 19 所示实验数据可以清楚地看到 位移--时间关系表现出的材料依赖性。图 20 则分 别示出了不同加载速率及不同峰值保荷时间对热 漂移率测试的影响。显然,试验参数对热漂移率 校准值也有一定程度的影响。



图 19 一些材料在卸载阶段 10% P<sub>max</sub>载荷下保荷测得的 位移-时间曲线<sup>[85]</sup>

Fig. 19 Displacements of some materials during a holding period at 10% of maximum load during unloading <sup>[85]</sup>

可以说,由于热漂移率估计值精度所导致的 位移测量误差在几乎所有的测试结果中都应该不 同程度地存在。但是,在合理选择了实验参数的 情况下,这种误差对卸载数据拟合及接触刚度计 算影响通常可以忽略不计。

图 21 示出了一个具体的测试实例以说明热 漂移修正对测试结果的影响程度。图 21(a)为对同 一组载荷-位移数据采用不同热漂移率(热漂移 率数值示于图中)修正后得到的 P-h 曲线。可以 看出,热漂移率在 0.0 nm/s - 0.8 nm/s 之间变化时 对 P-h 曲线的影响并不明显。图 21(b)为对卸载 数据按式(8)拟合、进而由式(14)计算得到的初 始卸载斜率 S 对热漂移率的依赖关系。可以看出, 热漂移率每变化 10%,相应导致的初始卸载斜率 的变化量只有约 0.8%。考虑到测试过程中仪器已 经自动进行了热漂移校准,校准值的误差一般并 不会超过 10%,因此对初始卸载斜率的影响是可 以忽略不计的。

获得图 21 所示数据的纳米压痕测试过程中, 加载和卸载分别持续 30 s,保荷阶段为 10 s。也 就是整个测试过程持续 70 s。在国际标准 ISO 14577-1-2015<sup>[5]</sup>中,对于准静态压痕实验推荐的 测试过程也是持续 70 s:加载阶段 30 s、保荷 30 s 及卸载阶段 10 s。在如此短的时间内,即使热漂 移率的校准值存在一些偏差,对最终测试的影响 也是极为有限的。

然而,如果测试过程持续时间较长,热漂移 的影响会变得显著起来,热漂移率估计值的较小 误差可能就会导致最终测试结果的显著误差。图 22示出了一些极端的例子。图中的三条曲线分别



图 20 在卸载阶段 10% P<sub>max</sub>载荷下保荷测得的位移--时间曲线:(a) 加载速率的影响 (材料:Al/BK7); (b) 峰值载荷保荷时间的影响 (材料:BK7 玻璃)<sup>[85]</sup>





#### 图 21 热漂移率对石英玻璃(a)*P-h* 曲线及(b)初始卸载 斜率 *S* 的影响 (未公开发表数据)

Fig. 21 Effect of thermal drift rate on (a) *P*-*h* curves and (b) the initial unloading slope. Data measured on silica glass with a prescribed *P*<sub>max</sub> of 150 mN, a loading time of 30 s and a holding time of 10 s (unpublished data)



#### 图 22 不同条件下测得的石英玻璃纳米压痕 P-h 曲线 (未公开发表数据)

Fig. 22 P-h curves of silica glass measured with nanoindentation tests under different conditions: (a) loading time: 10 s, holding time: 15 s, unloading time 10 s;
(b) loading time: 600 s, holding time: 15 s, unloading time 600 s; (c) loading time: 10 s, holding time: 480 s, unloading time 10 s (unpublished data)

采用不同的实验参数测得:曲线 A 采用的是常规 准静态压痕测试过程,加载阶段和卸载阶段分别 持续 10 s,保荷阶段持续 15 s;曲线 B 采用了一 个相对低得多的加载速率,加载阶段和卸载阶段 分别持续 600 s,保荷阶段持续 15 s;曲线 C 的测 试则相当于一个压痕蠕变测试过程,加载阶段和 卸载阶段分别持续 10 s,保荷阶段持续 480 s。三 条曲线均为纳米压痕仪自动完成热漂移校准后输 出的最终结果。

基于对图 21 的分析,可以认为图 22 中曲线 A 基本消除了热漂移影响。随着载荷的增大,曲 线 B 在加载阶段位移增大的速率与曲线 A 相比明 显偏高。这一现象除了可以部分归因于材料在加 载过程中发生的与时间有关的变形 (如下文将提 及的滞弹性或蠕变等)之外,也在一定程度上反 映出了仪器自动校准的热漂移率存在的偏差。后 者在曲线 C 上得到了更清晰的反映:在加载阶段, 曲线 C 和曲线 A 基本重合,但在保荷阶段,随着 保荷时间的延长,曲线 C 的位移出现了逐渐减小 的趋势。这显然是一个不合理的实验现象,而导 致这一现象的最可能原因就在于热漂移率校准值 存在偏差。

因此,至少在测试过程持续时间较长的情况 (如研究加载速率对材料性能的影响时,可能会使 用到较低的加载速率;又如在研究材料的压痕蠕 变性能时,需要在载荷峰值处保荷一段较长的时 间)下,有必要对纳米压痕仪给出的*P-h*数据进 行分析 (比如说对若干次重复试验所得到的数据 进行对比),以确认最终的数据是否存在有热漂移 影响。

纳米压痕仪机架自身发生的弹性变形可以借助于机架柔度参数加以定量表征。机架柔度是纳米压痕实验前需要仔细校准的一个参数。机架柔度 ( $C_{\rm m}$ ) 定义为单位载荷作用下机架发生的弹性变形量。在不考虑热漂移影响的条件下,仪器位移传感器的测量结果  $h_{\rm t}$ 为压头压入深度 h 和机架的弹性变形  $h_{\rm m}$  (=  $C_{\rm m}$ P) 之和,如式(16):

$$h_{\rm t} = h + C_{\rm m} P \tag{16}$$

为了确定  $C_m$ ,可以把机架的变形和压头与样品的接触变形分别视作一根弹簧的变形,而整个系统则相当于这两根弹簧的串联,系统的总柔度  $C_t$ 应该等于机架柔度和样品的接触柔度 (即接触 刚度 S 的倒数) 之和,如式 (17):

$$C_{\rm t} = \frac{\sqrt{\pi}}{2\beta E_{\rm r}} \frac{1}{\sqrt{A}} + C_{\rm m} \tag{17}$$

式 (17) 表明系统总柔度 C<sub>t</sub> 与接触面积的 倒数平方根 A<sup>-1/2</sup>之间呈线性关系,机架柔度可以 由该线性关系的截距项确定。 Oliver–Pharr 的原始工作<sup>[2]</sup>中提出了一个确 定  $C_m$ 的精细方法:对一个已知弹性模量的样品 (最好是标准样品)在较大载荷下进行纳米压痕 实验,通过分析卸载曲线确定  $C_t 和 h_c$ ,以压头的 理想面积函数  $A = 24.5h_c^2$ 计算接触面积  $A_o$ 首先 令  $C_m = 0$ 、 $C_t = S$ ,对  $C_t 与 A$ 按式 (17)进行拟合 分析,得到  $C_m$ 的一个估计值;根据这个估计值, 通过式 (16)对载荷–位移数据进行修正,重新确 定 S、 $h_c$ 及A,令 $C_t = S$ ,重新对  $C_t$ 与 A按式 (17) 进行拟合分析,得到一个新的  $C_m$ 值。这个过程 反复迭代,直至获得一个收敛的  $C_t$ 。对最终校准 结果的一个验证标准是:最终获得的  $C_t = A^{-1/2}$ 直 线关系的斜率与 $\sqrt{\pi}/(2\beta E_r)$ 值相差在百分之几之 内。如果达不到这个标准,就需要检查压头尖端 是否已经严重磨损。

图 23 示出了 Oliver 和 Pharr 采用金属 Al 进行机架柔度校准所得到的结果。





目前,对机架柔度进行校准通常采用连续刚 度试验进行。具体细节可以在文献 [4] 中查阅。 与热漂移校正不同,机架柔度的校准是在测试开 始前借助于标准样品进行的。纳米压痕仪自动记 录校准结果,并在后续的测试中自动完成对实验 数据的修正。一般说来,机架柔度校准值与真实 值之间的偏差很小,对后续测试实验数据的影响 极其微弱。

# 3.2 实验参数的影响

对于准静态压痕试验而言,在峰值载荷  $P_{max}$ 不变的情况下,可变的实验参数包括加载时间、 保荷时间和卸载时间。前面已经提到,国际标准 ISO 14577-1-2015<sup>[5]</sup>推荐,对于准静态压痕实验, 加载时间、保荷时间和卸载时间一般应分别选择 为 30 s、30 s 和 10 s。这些实验数据的选择可以 在最大程度上减小与时间有关的形变过程对测试 结果的影响。

与时间有关的形变过程一般包括滞弹性、蠕 变等<sup>[86]</sup>。

滞弹性是相对于弹性而言的。理想的弹性体 其发生弹性变形的速度非常快 (通常相当于声 速),因此,认为在加载过程中应力和应变是同步的, 二者间具有单调函数关系且服从胡克定律。但是真 实材料中一般都存在有应变落后于应力的现象:在 载荷保持不变的情况下,材料的弹性变形随着时间 的延续而缓慢增长;在载荷去除后,这种变形不能 立即恢复,而是在一段时间内缓慢恢复。

蠕变指的则是材料在恒定载荷作用下,应变 随时间延续而持续增大的现象。蠕变形变与滞弹 性形变不同:在外力去除后,后者可以缓慢恢复, 而前者则不能恢复。也就是说,蠕变是一种不可 逆形变,塑性形变也是一种不可逆形变。蠕变与 塑性形变的区别在于对时间的依赖性:蠕变形变 随时间延续而增大,塑性形变则可以视作是一个 与时间无关的过程 (当然,严格地说塑性形变也 是一个动力学过程,只不过在绝大多数情况下形 变所需的时间非常短而已)。

考虑到在纳米压痕实验中如何区分滞弹性和 蠕变并不是本文讨论的范畴,再者对于陶瓷材料 而言,蠕变形变较滞弹性形变更为显著一些。因 此,除非特别说明,本文后续的讨论将把与时间 有关的形变过程统一简称为蠕变过程。

在纳米压痕实验过程 (尤其是保荷阶段) 中,蠕变过程对位移的贡献在大多数情况下是不 能忽略的。前提介绍的 Oliver-Pharr 工作中就曾 经观察到了在对金属材料和钠钙玻璃的反复卸载 -加载过程中出现的位移增大现象 (图 7),这些增 大的位移就主要来源于蠕变。在对钢基体上厚度 为 2.1 µm 的 DLC 薄膜进行纳米压痕实验时, Chudoba 和 Ritcher<sup>[82]</sup>观察了在峰值载荷 (*P*<sub>max</sub> = 30 mN) 处保荷 45 s 及在卸载阶段载荷降低至 28% *P*<sub>max</sub>处保荷 45 s 的位移-时间关系,结果如 图 24 所示。显然,与卸载阶段相比,峰值保荷阶 段位移的变化量更大,说明在峰值保荷阶段确实 发生了一定程度的蠕变形变。

顺便指出,图 24 所示的 28% P<sub>max</sub>处保荷阶 段的数据与图 18(a)相比,线性相关性明显变差。 这是绝大多数实际测试中经常观察到的现象。这 种相关性较差的数据无疑将影响到热漂移校准值 的可靠性。



图 24 钢基 DLC 薄膜纳米压痕实验过程中,载荷峰值 (P<sub>max</sub> = 30 mN) 保荷阶段及卸载至 28% P<sub>max</sub>保荷时位移 随时间的变化关系(为便于比较,两条曲线的起始 位移平移至同一点)<sup>[82]</sup>

Fig. 24 Displacements of a DLC film on steel during a holding period at a maximum load of 30 mN and after unloading to 28% of maximum load (For comparison, the starting displacements were set to equal values)<sup>[82]</sup>

图 25 所示为镍 (Ni) 基体上厚度为 5.1 μm 的 Au 涂层在纳米压痕实验过程中不同最大载荷 P<sub>max</sub> 下保荷时的位移变化曲线。可以看出,在不 同 P<sub>max</sub> 下保荷均观察到了位移随时间持续增大的 现象;而且,随着 P<sub>max</sub> 的增大,同一时间内的位 移变化量增大。这与常规拉伸或弯曲蠕变实验中 所观察的规律是相似的。图 25 所示的曲线通常也 称为压痕蠕变曲线,通过对这类曲线进行分析可 以获得材料的蠕变指数等性能参数<sup>[87,88]</sup>。

一般说来,在一个恒定载荷作用下发生的蠕 变形变大致可以分为四个阶段<sup>[86]</sup>。首先是蠕变的 起始阶段,材料在外力作用下发生瞬时弹性形变;



如果此时的外力超过了材料的弹性极限,则在这 个阶段也会发生一部分塑性形变,这个阶段的形 变可以近似认为是瞬时发生的。经历了极为短暂 的起始阶段之后,蠕变进入到一个应变速率随时 间而不断减小的阶段,通常称为减速蠕变阶段, 减速蠕变阶段通常是短暂的,很快便过渡到一个 稳态蠕变阶段,在稳态蠕变阶段,应变速率几乎 保持不变;之后,当变形量达到某一极限值后, 蠕变进入到最后一个阶段——加速蠕变阶段,在 加速蠕变阶段,应变速率随时间急剧增大,很快 便导致材料发生断裂。

之所以在这里比较详细地介绍蠕变形变的一 些基本特点,是为了更好地说明压痕蠕变对弹性 模量和硬度测试的影响。

从图 25 所示的曲线上可以明显地看到减速 蠕变阶段和稳态蠕变阶段的存在。由于保荷时间 仅有 48 s,因此,这些压痕蠕变试验并没有观察 到加速蠕变阶段。又由于图中的纵坐标为位移变 化量,因此,起始蠕变阶段也没有在图中表现出 来。但是在 Oliver-Pharr 工作中观察到的反复卸 载-加载过程中出现的位移增大现象(图 7), 很大 程度上可以归因于起始蠕变阶段的变形:虽然在 峰值载荷处没有保荷直接卸载,但是纳米压痕仪 从加载模式切换到卸载模式是需要时间的,通常 在 0.1 s-0.5 s 左右。这一点从如图 26 所示的实验 结果中可以更清楚地看出。图 26 给出了对 BK7 玻璃基体上厚度为 3.4 µm 的 Al 膜进行纳米压痕 实验所得到的结果:实验采用的峰值载荷为 30 mN, 加载阶段的时间为 92 s, 分别在不同的峰值 保荷时间条件下测试了 P-h 曲线。从图 26(a)可以 看到,因为加载持续时间相同,所有 P-h 曲线加 载阶段的数据是基本重叠的,而峰值保荷时间的 延长则导致了卸载部分向大位移方向移动。这一 结果与 Oliver-Pharr 所观察的现象(图 7)一致。将图 26(a)所示曲线的保荷阶段局部放大后(图 26(b))便 发现了一个有趣的现象:在保荷时间为 0.1 s 的条 件下, 在卸载的起始阶段位移出现了一个突增, 导致载荷快速降低;之后位移与载荷之间又迅速 恢复到幂函数所描述的关系。这个卸载起始阶段 位移的突增应该就是蠕变起始阶段的表现:在这 个阶段, 位移的迅速增大遇到了纳米压痕仪从加 载模式到卸载模式的转变,纳米压痕仪无法及时 响应以保持恒定载荷。注意到随着保荷时间的延 长,卸载起始阶段位移的突增程度逐渐减弱,在 保荷时间延长到120s时已经几乎观察不到了。





对如图 26 所示的实验数据按 OP 方法进行分 析得到的弹性模量值随保荷时间的变化关系示于 图 27。可以看到,随着保荷时间的延长,OP 方 法确定的弹性模量值先是表现出一个急剧降低的 趋势,在保荷时间超过 40 s之后便基本保持不变。 这一结果表明,适当延长峰值载荷保荷时间可以 基本消除蠕变对压痕弹性模量测试的影响。基于 这一结果以及对其他一些材料的研究结果, Chudoba 和 Ritcher<sup>[82]</sup>建议:为确保纳米压痕技术 测得的弹性模量及硬度的准确性,对于不同的材 料应选择不同的保荷时间。保荷时间的选择依据 为:由蠕变导致的位移变化率在 1 min 内不超过 1%。对于大多数陶瓷材料来说,30 s 的保荷时间 是较为合适的。



#### 图 27 由图 26 所示实验结果确定的弹性模量随保荷 时间的变化关系<sup>[82]</sup>

Fig. 27 Variation of elastic modulus with holding time determined with the experimental data shown in Figure 26  $^{[82]}$ 

不难理解,蠕变形变在测试的加载阶段和卸载阶段也会发生,只是由于载荷处于持续增大或持续减小状态,蠕变形变对载荷-位移关系的影响

相对较小,大多数情况下可以忽略不计。只有在极低的加载速率或卸载速率条件下,蠕变的影响 才有可能变得显著起来 (参见图 22)。这也是国际标准 ISO 14577-1-2015<sup>[5]</sup>中推荐加载时间和保荷时间分别选择 30 s 和 10 s 的主要原因。

此外,近10年来,加载速率对压痕硬度的影响得到了越来越多的研究。这方面的研究主要针 对材料在压痕过程中发生的应变硬化,即材料的压 痕硬度随有效应变速率的增大而增大的现象。应变 硬化现象在金属材料中较为普遍,因此,研究也主 要集中于金属材料<sup>[89,90]</sup>(尤其是金属玻璃<sup>[91,92]</sup>),不 过,近年来对脆性陶瓷材料的相关研究也开始陆 续出现<sup>[93-95]</sup>。

#### 3.3 试样表面状态的影响

纳米压痕试验,顾名思义是在纳米尺度上进 行的。与常规的力学性能测试技术相比,试样的 表面状态对纳米压痕试验测试结果的影响显得尤 其重要。

对于陶瓷材料,为了获得适合于纳米压痕测 试所需的光滑试样表面,通常需要对试样进行研 磨和抛光,而研磨和抛光过程则不可避免地会在 试样表面引进一定程度的表面残余应力<sup>[96,97]</sup>。这 一表面残余应力的存在会导致压痕载荷-位移关 系不能准确反映出材料的真实性能。

Tsui 等人<sup>[98]</sup>设计了一个巧妙的实验以研究表 面应力对纳米压痕实验结果的影响。如图 28(a) 所示,将一个矩形截面柱状待测试样的两端从下 表面用螺钉分别与一块钢块连接;两块钢块之间 又以一根螺杆相连接,通过螺杆改变两块钢块之 间的距离使得试样发生弯曲变形,从而在侧面产 生一个表面单轴应力;通过试样上表面粘贴的应 变片量测这个单轴应力的数值。在试样表面引入 双轴应力的装置采用的则是一个十字形的待测试 样,如图 28(b)所示,在试样各端部下表面连接一 块钢块,而后改变钢块间的距离,通过试样上表 面粘贴的应变片量测双轴应力的数值。

采用固定的峰值载荷 *P*<sub>max</sub> = 110 mN 对如图 28 所示的试样进行纳米压痕实验确定弹性模量 及硬度,结果如图 29 所示。从这一结果可以看出, 表面应力状态对测试结果的影响十分显著,而表 面应力对硬度的影响又显然大于对弹性模量的影 响。对各种表面应力状态下测得的 *P-h* 曲线卸载 部分按 OP 方法进行分析得到的初始卸载斜率以 及按标定的面积函数计算得到的接触面积示于图 30。可以看出,表面应力状态对初始卸载斜率的 影响似乎不是很明显,但接触面积在表面应力从 压应力逐渐转变为拉应力的过程中呈现出了显著 的增大趋势。与图 29 所示结果相结合不难看出, 导致弹性模量和硬度的表面应力依赖性的关键因 素是接触面积。为此,Tsui等人<sup>[98]</sup>进一步采用高 倍光学显微镜实际测量了试样表面的残余压痕面积,并将其与由面积函数计算得到的结果进行了对比,如图 31 所示:尽管光学方法测得的接触面积呈现较大的离散性,但显然表现为几乎与表面应力状态无关。这就说明,表面应力状态对压痕载荷-位移关系产生了影响,进而导致接触面积计算值存在偏差。

关于陶瓷材料表面应力状态对纳米压痕实验数据的影响似乎还没有出现较为系统的研究。但 是根据 Tsui 等人<sup>[98]</sup>的这一工作不难预测,同样的 影响应该也存在于陶瓷材料中。因此,在试样的 制备过程中,通过研磨之后的仔细抛光尽可能去 除试样表面的残余应力层,可以在一定程度上提 高纳米压痕测试的准确性和可靠性。

有可能对纳米压痕实验结果产生显著影响的 试样表面状态参数还包括表面粗糙度<sup>[99,100]</sup>。图 32 示出了纳米压痕过程中表面粗糙度影响接触 面积的三种典型情况<sup>[101]</sup>:(a) 一个凹陷点,(b) 一







Fig. 29 Effect of surface stresses on (a) elastic modulus and (b) hardness of aluminum alloy determined with nanoindentation <sup>[98]</sup>



#### 图 30 不同表面应力状态下测得的铝合金纳米压痕 接触刚度及接触面积<sup>[98]</sup>

Fig. 30 Surface stress dependencies of the nanoindentation contact stiffness and contact area of aluminum alloy<sup>[98]</sup>



图 31 由纳米压痕实验确定的接触面积与光学方法 测定的接触面积对比<sup>[98]</sup>



个理想平面以及 (c) 一个凸起点。从图 32 右侧 可以看出,在获得相同接触面积的条件下,压头 在三种情况下的位移显然是不一样的:在凹陷点 处所需的压入深度最小,而在凸起点处所需的压 入深度最大。这显然就将在一定程度上导致最终 弹性模量和硬度测试结果的误差。

事实上,如图 32 所示只是三种极端的情况。



Fig. 32 Schematic illustration showing the effects of roughness on the contact area during nanoindentation<sup>[101]</sup>

更一般的情况是压头与试样表面的初始接触点并 不是恰好落在凹陷点的最低处或者凸起点的最高 处。当最初的接触点偏离了凹陷点的最低处或者 凸起点的最高处时,就会出现压头的一侧与材料 接触而另一侧悬空的情况,这时材料对压头压入 施加的阻力大大减小,从而使得在加载的初始阶 段位移的迅速增大并不伴随有载荷的持续增大。 图 33 示出了对一种热压氮化硅 (Si<sub>3</sub>N<sub>4</sub>) 陶瓷进 行纳米压痕实验所获得的两条 P-h 曲线。虚线表 示的A曲线加载部分和卸载部分都比较连续而光 滑,表现出较为理想的形状。而实线示出的 B 曲 线在加载的初始阶段明显出现了一个位移快速增 大的过程。注意到当 h > 200 nm 之后,两条曲线 基本保持平行,也就是说 B 曲线相当于是 A 曲线 沿横轴方向平移了一段距离。B 曲线在加载初始 阶段的这种位移快速增大应该和试样表面粗糙度 有关。

表面粗糙度对最终测试结果的离散性也有较 大的影响。Qasmi 和 Delobelle<sup>[102]</sup>对一系列具有 不同表面粗糙度的材料进行了大量的纳米压痕实 验,测定了表面粗糙度与弹性模量测试值离散性 之间的关系,结果如图 34 所示。图中的横坐标为 试样表面平均粗糙度 *R*<sub>ms</sub>与压头压入深度 *h* 的比 值,纵坐标为弹性模量测试结果的变异系数 (标 准差σ<sub>E</sub>与平均值 *E*<sub>mean</sub>之比),可以看出二者之间 存在很好的相关性,即试样表面越粗糙,测试结 果的离散性就越显著。



#### 图 33 表面粗糙度对热压氮化硅陶瓷纳米压痕 P-h 曲线的影响 (未公开发表数据)

Fig. 33 Effect of surface roughness on the P-h curves of hot-pressed Si<sub>3</sub>N<sub>4</sub> (unpublished data)



#### 图 34 农面柏植度与纳木压很弹性候重测试结果 离散性之间的关系<sup>[102]</sup>

Fig. 34 Variation of nanoindentation-determined elastic modulus with surface roughness of the test sample <sup>[102]</sup>

在应用纳米压痕技术研究水泥混凝土<sup>[103]</sup>、涂 层或薄膜<sup>[104, 105]</sup>这类难以控制表面粗糙度的材料 时,这一问题显得更为突出。对陶瓷材料来说, 仔细抛光可以改善试样表面的粗糙度,部分消除 其对实验结果的影响。

#### 3.4 卸载数据拟合

在 Doerner 和 Nix 的工作<sup>[70]</sup>中,初始卸载斜 率是通过简单卸载曲线上端的三分之一部分为线 性、并以此外推到 P = 0 而获得的。这一处理的 基础是假设实际弹–塑性材料压痕卸载阶段的变 形行为可以模拟为一个纯弹性体在圆柱形压头作 用下的变形行为。Oliver–Pharr 工作<sup>[2]</sup>通过大量实 验证实,将 Berkovich 压头模拟为一个回转抛物 面形压头更为合适,这样就可以将卸载数据按式 (8)进行拟合以获得初始卸载斜率。Oliver–Pharr 工作<sup>[2]</sup>中对这两种假设条件下确定的初始卸载斜 率进行了对比,对金属 W 在  $P_{max} = 120$  mN 条件 下的数据进行分析的结果示于图 35:图中两条虚 线分别为采用式(8)对第一次和最后一次加载-卸 载过程的卸载数据进行拟合所得到的结果,而 实线连接的数据点则是按照 Doerner-Nix 方法 确定的初始卸载斜率。图 35 中的横坐标为采用 Doerner-Nix 方法进行分析时所使用的数据区域 (所取区域的最低载荷与 *P*<sub>max</sub>的比值)。可以看出, Doerner-Nix 方法确定的初始卸载斜率强烈依赖 于所选数据区域的范围,数据区域越宽,初始卸 载斜率越小。这说明 Doerner-Nix 方法是不适合 于初始卸载斜率确定的。



#### 图 35 采用不同方法由金属 W 纳米压痕卸载曲线确定的 初始卸载效率<sup>[2]</sup>

Fig. 35 Values of initial unloading slope determined with different method for tungsten <sup>[2]</sup>

采用幂函数对第一次和最后一次加载-卸载 过程的卸载数据进行分析所得到的初始卸载斜率 之间也存在有一定的偏差,第一次卸载所得到的 结果稍微偏大,这显然是由于蠕变效应导致的。 但是这两个结果之间的偏差很小(大致在 5%左 右),这似乎说明蠕变效应对幂函数方法确定初始 卸载斜率的影响并不显著。注意到三次加载-卸载 之后的重新加载是在 10% *P*max 水平下保荷了 100 s 之后进行的,可以认为这时蠕变效应已经得 到了基本消除。特别是对于最后一次卸载的数据, 在非常小的数据范围内采用 Doerner-Nix 方法确 定的初始卸载斜率与采用幂函数拟合得到的结果 非常接近,这似乎说明通过幂函数确定的的确是 初始的卸载斜率。

在应用幂函数对卸载数据进行拟合分析时,卸 载数据的选取是一个关键因素。Marx 和 Balke<sup>[106]</sup> 在采用有限元模拟方法研究弹-塑性材料的压痕 变形行为时发现,分别选取全部卸载数据和选 择前 30%卸载数据按式(8)进行拟合时,所得到的 *m*值明显不同。如图 36 所示,只用部分数据进行 拟合得到的*m*值明显小于对全部数据进行拟合所 得到的结果。顺便说明一点,注意到图 36 的横坐 标是材料性能参数 *H*/*E*,不同 *H*/*E* 的条件下得到 的 *m* 值也不同,这与 Oliver–Pharr 工作中的实验 结果是一致的。其他一些作者也发现卸载数据的 选取范围将显著影响幂函数指数的拟合值<sup>[107,108]</sup>。

![](_page_24_Figure_4.jpeg)

图 36 卸载曲线数据选取范围对幂函数指数 m 拟合 结果的影响<sup>[106]</sup>

Fig. 36 Influence of the number of data included in the fitting procedure on the power-law exponent  $(m)^{[106]}$ 

为了更进一步地说明 Marx-Balke 工作<sup>[106]</sup>的 意义,我们对图 37 所示的两条 P-h 曲线的卸载 数据进行了分析。这两条曲线分别是对石英玻璃 和一种 Y<sub>2</sub>O<sub>3</sub> 稳定四方相氧化锆 (Y<sub>2</sub>O<sub>3</sub> stabilized tetragonal zirconia polycrystalline, Y-TZP) 进行纳 米压痕实验得到的。考虑到如前所述,起初蠕变 阶段及减速蠕变阶段将影响到卸载最初阶段的载 荷-位移关系,因此,在选择用于拟合分析的卸载 数据时,我们将载荷上限 Pu 设定为峰值载荷的 95%, 即  $P_{\rm U}$  = 0.95 $P_{\rm max}$ 。选择不同的载荷下限  $P_{\rm L}$ , 对处于 PL - PU范围内的卸载数据按式(8)进行拟 合,根据拟合结果按式(14)计算初始卸载斜率, 结果示于图 38。可以看出,初始卸载斜率的计 算值明显依赖于卸载数据的选取范围。图 38 所示 结果中一个很有意思的特点是:对于所考虑的两 种材料,曲线都在  $P_{L} \approx 0.5$  附近出现了一个极小 值点。

国际标准 ISO 14577-1-2015<sup>[5]</sup>推荐一般采用 98% *P*<sub>max</sub> - 20% *P*<sub>max</sub> 范围内卸载数据进行拟合分 析以确定初始卸载斜率。但从图 38 所示结果不难 看出,这一推荐范围似乎并不十分合适,尽管卸 载数据不同取值范围对 *S* 计算值的影响并不显 著。对于更精细的数据处理 (如用于检验理论分

![](_page_24_Figure_9.jpeg)

图 38 对图 37 所示曲线卸载部分不同区域进行分析 得到的初始卸载斜率(未公开发表数据)

Fig. 38 Influences of the number of unloading data included for power law fitting procedure on the resultant initial unloading slope (unpublished data)

析),建议参照图 38 考察卸载数据取值范围对 S 的影响以得到更为可靠的结论。笔者认为,选取 图 38 所示的 S 极小值或许更为合适。

采用幂函数对卸载数据进行回归分析所面临 的第二个问题是:式(8)中存在三个待定参数*a*、 *m*和*h*<sub>f</sub>,这就需要借助于一个反复迭代的过程来 进行拟合。从统计学上说,由于每一个实验数据 本身都存在着一定程度的随机误差,这样的反复 迭代过程往往会在某一个设定的*h*<sub>f</sub>值上出现一 个局部的最小误差,从而导致不正确的拟合结 果<sup>[108, 109]</sup>。在绝大多数情况下,这一迭代过程都 是由纳米压痕仪自带的数据处理软件自动完成 的,研究人员得到的只是最终的弹性模量和硬度 值。这一迭代过程(以及上面提及的卸载数据选 取、最大位移确定等)所引起的误差在很大程度 上取决于材料性能以及试样的表面加工质量,数 据处理软件自然无法考虑到所有可能的因素,因 此,在使用纳米压痕仪直接输出的弹性模量和硬 度值时需要十分谨慎,必要时就应该对卸载数据 进行人工拟合分析以校验纳米压痕仪输出结果的 准确性和合理性。

为了回避幂函数中存在三个待定参数而导致 的拟合困难,也可以考虑采用二次多项式形式拟 合卸载数据,如式(18)<sup>[9]</sup>:

$$P = a_0 + a_1 h + a_2 h^2 \tag{18}$$

式中的 *a*<sub>0</sub>、*a*<sub>1</sub>和 *a*<sub>2</sub>均为待定参数。虽然二次 多项式也包括了三个待定参数,但是由于一般的 数据软件都内嵌了二次多项式拟合的标准程序, 这就大大简化了数据拟合的工作量,且提高了数 据拟合的准确度。

采用如式 (18) 所示的二次多项式拟合纳米 压痕卸载数据时,相应的初始卸载斜率可以由式 (19)给出:

$$S = \left(\frac{\mathrm{d}P}{\mathrm{d}h}\right)_{h=h_{\mathrm{max}}} = a_1 + 2a_2h_{\mathrm{max}} \tag{19}$$

对钠钙玻璃、TZP 和 Si<sub>3</sub>N<sub>4</sub> 三种脆性材料进 行纳米压痕实验,对所得到的卸载数据按幂函数 分析 (式(8)和式(14)) 得到初始卸载斜率  $S_{OP}$ ,再 按二次多项式分析 (式(18)及式(19))得到初始卸 载斜率  $S_{QP}$ ,结果一并示于图 39<sup>[9]</sup>。显然, $S_{OP}$ 和  $S_{QP}$ 之间吻合得非常好,仅在  $P_{max}$ 很大 (相应 地 S 很大)情况下存在微弱的偏差。

通过简单的数值分析就可以很容易理解如图 39 所示的结果。事实上,如果一组数据符合指数 在1-2之间的幂函数关系,那么这组数据同样也 可以用一个二次多项式加以很好的描述<sup>[110]</sup>。

为理解二次多项式的物理意义,可以将式 (18) 改写为式 (20) 的形式:

$$P - P_0 = a_2 (h - h_f)^2$$
(20)

式中的 $P_0$ 、 $a_2$ 和 $h_f$ 为待定参数。

式 (20) 与式(8)一样具有幂函数形式,都包 含有一个最终位移 *h*<sub>f</sub>。与式(1)相比较,式(20)具 有一个固定的幂函数指数 *m* = 2,似乎说明弹-塑

![](_page_25_Figure_14.jpeg)

图 39 分别由幂函数和二次多项式确定的初始 卸载斜率的对比<sup>[9]</sup>

Fig. 39 Comparison between the initial unloading slopes determined with power-law ( $S_{OP}$ ) and those with the quadratic polynomial ( $S_{OP}$ )<sup>[9]</sup>

性材料的 Berkovich 压痕卸载阶段的变形可以 模拟为一个纯弹性体在圆锥形压头作用下的变 形,而式(8)中的幂函数指数表现出随材料变化 的性质,必须借助于一个"有效压头形状"来加 以描述。

与式(1)相比较,式(20)中出现的另一个参数 P0从形式上相当于是对载荷的一个修正,这个修 正也是可以理解的。至少对于脆性材料来说,在 压痕的加载阶段,随着外加载荷的增大,压头下 方局部材料将发生相应的塑性变形,而包围着压 痕塑性形变区的弹性基体也会发生—定程度的弹 性变形。在卸载阶段,随着外力的去除,弹性基 体的弹性形变开始恢复,而这一弹性恢复过程将 受到压痕塑性区的限制,最终在弹-塑性边界处产 生一个残余应力[111, 112]。由于这一压痕残余应力 的存在,完全卸载后的压痕表面事实上是处在一 个预应力状态,压痕塑性区附近(尤其是下方) 的材料仍然处于一定程度的弹性形变状态。式 (1) 考虑的是一个应力自由的纯弹性体表面,为 了与这个"应力自由"相一致,引进一个载荷修 正项  $P_0$  似乎是必要的<sup>[9]</sup>。

需要说明的是,这里的压痕残余应力与 3.3 小节中提及的表面残余应力本质上是不同的:压 痕残余应力是材料对压痕过程的响应,是压痕试 验过程中必然产生的一种应力;而表面残余应力 则是在压痕试验之前引进,表面残余应力的存在 会导致压痕载荷-位移关系不能准确反映出材料 的真实性能。

这里还需要明确一个在几乎所有正式文献中

都没有特别提及的细节。如前所述,为了尽可能 减小蠕变过程对卸载数据的影响,纳米压痕试验 一般都需要在卸载之前在峰值载荷处保荷一段时 间 (如 30 s),这个保荷阶段中载荷保持不变,但 位移相应会有一定程度的增大,如图 40 所示:在 保荷阶段,位移从初始的 h<sub>max</sub>逐渐增大到保荷结 束时的 h'max。在这种情况下,根据式 (14) 计算 初始卸载斜率时需要用 h'max代替 hmax。如果在卸 载起始阶段的载荷偏离了保荷阶段的起始值 Pmax (如图 26(b)所示保荷时间少于 30 s 的情况),则需 要根据幂函数拟合结果外推获得在 P = Pmax 时的 位移值作为 h'max,以最大限度地减少 S 计算值本 身的不确定性。这一做法是很容易理解的,因为 我们需要确定的是卸载曲线的初始斜率。

![](_page_26_Figure_4.jpeg)

图 40 压痕试验保荷阶段位移的增大 (未公开发表数据) Fig. 40 Increase in displacement during holding period of a nanoindentation test (unpublished data)

当然,我们也可以把整条卸载曲线向小位移 方向平移使之与加载曲线相交于 h<sub>max</sub>,如图 40 中 空心符号所示。显然,这样的平移不会影响到初 始卸载斜率,但幂函数拟合得到的 h<sub>f</sub>会相应减小。

确定了初始卸载斜率 (接触刚度) S 之后,即 可根据式 (13) 直接计算得到对应于峰值载荷处 的接触深度。这里同样有一个在几乎所有正式文 献中都没有特别提及的细节,即 h<sub>max</sub> 的选取问题。 在借助于卸载曲线拟合结果计算初始卸载斜率 时,我们需要取图 40 所示的 h'max 代替 h<sub>max</sub>。然 而,在根据式 (13) 计算 h<sub>c</sub>时,则需要直接使用 加载曲线上的 h<sub>max</sub>,而不是 h'max。这是很容易理 解的,因为 h'max 中包括了蠕变变形量。

式 (13) 中包含了一个与压头形状有关的参数 *ε*。前面提到,尽管实验发现 Berkovich 压头

的 *m* 因材料不同而在 1.2-1.5 之间变化 (表 1), Oliver 和 Pharr <sup>[2]</sup>认为在 Berkovich 纳米压痕实验 数据分析中取 $\varepsilon$ = 0.75 是较为合适的。显然,这样 的处理多少会给 *h*<sub>c</sub>的确定带来一定的误差。为了 说明 $\varepsilon$  取值对纳米压痕力学性能测试精度的影 响, Pharr 和 Bolshakov 在"有限压头形状"概念 基础上进行了一些分析。首先,根据 Sneddon 的 理论分析<sup>[49]</sup>给出了 $\varepsilon$  与幂函数指数 *m* 之间关系 的解析形式,如式 (21)<sup>[73]</sup>:

$$\varepsilon = m \left[ 1 - \frac{2(m-1)\Gamma\left(\frac{m}{2m-2}\right)}{\sqrt{\pi\Gamma\left(\frac{1}{2m-2}\right)}} \right]$$
(21)

由式 (21) 确定的  $\varepsilon$ -m 关系示于图 41。在绝 大多数纳米压痕实验中所观察到的 m 值应该处于 1.2-1.6 这个范围内。从图 41 可以看出,在这个 范围内,  $\varepsilon$  在 0.74-0.79 之间变化,平均值为 0.76。 因此,取 $\varepsilon$ = 0.75 似乎是比较合理的。当然,我们 也可以根据实际确定的幂函数指数 m 值,由式 (21) 计算得到相应的  $\varepsilon$  用于 h<sub>c</sub>的确定。

![](_page_26_Figure_12.jpeg)

图 **41** 式 (21) 确定的压头形状因子 ε 与幂函数 指数 *m* 之间的关系<sup>[73]</sup>

![](_page_26_Figure_14.jpeg)

#### 3.5 压痕功概念

这里我们再简要介绍一下近年来出现的一种 确定初始卸载斜率的压痕功方法。

事实上,压痕功这个概念很早就已经出现<sup>[51]</sup>。 通过将硬度的定义式(7)改写为式(22)的形式:

$$P_{\max}h_{\max} = HAh_{\max} \propto H h_{\max}^3$$
(22)

就不难看出:式 (22)的左边为压痕载荷所 做的功,而右边则为材料发生塑性形变所消耗的 能量;也就是说,硬度概念本身就是建立在一个 能量平衡基础上的。在早期关于显微硬度压痕尺 寸效应的研究中,能量平衡分析发挥了积极的作 用。显微硬度实验的通常做法是测定在某一载荷 *P*作用下压头在试样表面留下的残余压痕对角 线长度 *d*,而后根据对角线长度和压头几何形状 计算压痕投影面积 *A* (*A* = *C*<sub>0</sub>*d*<sup>2</sup>),因此,对于显 微硬度测试的情况,式 (22)可以改写为式 (23) 的形式:

$$Pd \propto Hd^3$$
 (23)

式 (23) 成立的前提是:在压痕过程中,外加载荷 P 所做的功全部转变成了材料发生塑性形变所消耗的能量。但这一前提显然是不成立的,因为至少在压痕结束之后,试样的表面积会因为压痕凹陷区的出现而增大,相应地会消耗一部分表面能<sup>[113]</sup>。考虑到这一因素,可以将压痕过程的能量平衡关系写成式 (24) 的形式:

$$Pd = c_1 d^2 + c_2 d^3 \tag{24}$$

式中的 c1 和 c2 为常数。

式 (24) 最早被 Frohlich 等人<sup>[114]</sup>用于分析显 微尺度位移敏感压痕实验获得的 P-d 关系,后来 陆续被其他学者<sup>[115,116]</sup>用于分析各种材料显微硬 度的压痕尺寸效应。之后,Gong 等人将压痕过程 中的能量耗散机制分为分别与深度、面积和体积 成正比的三部分,又进一步将式 (24) 推广到了 更普遍的情况<sup>[113]</sup>,如式 (25):

$$Pd = c_0 d + c_1 d^2 + c_2 d^3 \tag{25}$$

式中的 c<sub>0</sub>也为常数。

在纳米压痕载荷-位移关系中,压痕功的概念 也得到了广泛的应用<sup>[117-119]</sup>。与显微硬度实验相 比,压痕功在纳米压痕实验中更易于应用,因为 各种能量耗散都有可能直接通过实验测得的 P-h曲线确定。在分析纳米压痕载荷-位移关系的压痕 功方法中涉及到的一些物理量示于图 42:加载曲 线下方的面积为压痕过程中载荷所做的总功  $W_t$ ; 卸载曲线下方则为压痕卸载阶段弹性恢复所释放 的能量 (弹性恢复功) $W_u$ ;总压痕功  $W_t$ 与弹性恢 复功  $W_u$ 之差即为压痕塑性功  $W_p$ 。此外,Attaf<sup>[120]</sup> 还 定 义 了 一 个 参 考 功 (Absolute Work 或 Reference Work)  $W_s$ ,即图 42 中斜线阴影所示三 角形区域的面积。

Attaf 对 SiO<sub>2</sub>、TiO<sub>2</sub>和 Ta<sub>2</sub>O<sub>5</sub>等 3 种氧化物陶 瓷纳米压痕数据进行了分析,发现参考功  $W_s$ 与总 压痕功  $W_t$ 、压痕塑性功  $W_p$ 及弹性恢复功  $W_u$ 之间 均呈正比关系<sup>[120]</sup>,如式 (26) – (28):

![](_page_27_Figure_12.jpeg)

#### 图 42 纳米压痕 P-h 曲线上与压痕功方法相关的 一些物理量

![](_page_27_Figure_14.jpeg)

$$W_{\rm s} = \frac{P_{\rm max} h_{\rm max}}{2} = \eta_{\rm t} W_{\rm t} \tag{26}$$

$$W_{\rm s} = \frac{P_{\rm max} h_{\rm max}}{2} = \eta_{\rm p} W_{\rm p} \tag{27}$$

$$W_{\rm s} = \frac{P_{\rm max} h_{\rm max}}{2} = \eta_{\rm u} W_{\rm u} \tag{28}$$

式中的比例系数 $\eta_t$ 、 $\eta_p$ 和 $\eta_u$ 均为与材料有关的常数。

进而,Attaf 又导出了如式 (29) 和 (30)两个 公式来分别用于描述纳米压痕 P-h 曲线的加载和 卸载部分<sup>[121,122]</sup>:

Loading: 
$$P = P_{\max} \left(\frac{h}{h_{\max}}\right)^{2\eta_t - 1}$$
 (29)

Unloading : 
$$P = P_{\text{max}} \left(\frac{h}{h_{\text{max}}}\right)^{2\eta_{\text{u}}-1}$$
 (30)

对实验数据进行的分析表明<sup>[121]</sup>,式 (29) 在 大多数情况下均可以很好地描述加载曲线,而式 (30) 对于卸载数据则仅仅能提供一个比较近似 的描述。Jha 等人的研究<sup>[123]</sup>进一步发现式 (30) 描述纳米压痕卸载数据的精度与材料有关:对于 卸载阶段弹性恢复程度较弱的材料精度较高;对 于较硬的材料,式 (30)则只能对卸载曲线的初 始部分做出近似描述。

由式 (30) 即可计算出初始卸载斜率:

$$S = \left(\frac{\mathrm{d}P}{\mathrm{d}h}\right)_{h=h_{\mathrm{max}}} = \left(2\eta_{\mathrm{u}} - 1\right)\frac{P_{\mathrm{max}}}{h_{\mathrm{max}}} \tag{31}$$

对几种材料的压痕实验数据分别按压痕功方 法和 OP 方法进行分析,图 43 对得到的初始卸载 斜率进行了对比<sup>[124]</sup>。可以看出,压痕功方法得到 的初始卸载斜率 ( $S_E$ ) 明显大于 OP 方法的计算 结果 ( $S_{OP}$ )。

![](_page_28_Figure_4.jpeg)

图 **43** 由压痕功方法得到的初始卸载斜率 S<sub>E</sub>与 OP 方法 得到的初始卸载斜率 S<sub>OP</sub>比较<sup>[124]</sup>

Fig. 43 Comparison between the initial unloading slopes determined with the work-of-indentation method ( $S_E$ ) and those with OP method ( $S_{OP}$ )<sup>[124]</sup>

Attaf 还推导出了一个计算接触深度的公式<sup>[122]</sup>,如式 (32):

$$h_{\rm c} = \frac{2(\eta_{\rm u} - 1)}{(2\eta_{\rm u} - 1)} h_{\rm max} \tag{32}$$

对几种材料进行的分析发现,由式 (32) 计 算得到的 (*h*<sub>c</sub>)<sub>E</sub> 与 OP 方法计算结果吻合得很好 (图 44)<sup>[124]</sup>。

![](_page_28_Figure_10.jpeg)

Fig. 44 Comparison between the contact depths determined with work-of-indentation method  $((h_c)_E)$  and those with OP method  $((h_c)_{OP})^{[124]}$  Jha 等人<sup>[124]</sup>对导致如图 43 和图 44 所示现象 的可能原因进行了一些分析,并引进了一些修正 因子来修正 S<sub>E</sub> 与 S<sub>OP</sub>之间的偏差。但总的说来, 这个修正基本上还属于经验性质。关于压痕功法 在纳米压痕实验数据分析中的应用还有很多工作 需要开展。

#### 3.6 材料显微结构影响

本文到目前为止所涉及到的纳米压痕 P-h 曲 线无论是加载部分还是卸载部分均表现为一条光 滑的曲线,因而卸载数据可以很好地拟合为幂函 数形式。然而,实际测试中所得到的 P-h 曲线并 不总是十分完美,在某些特殊情况下可能就会出 现卸载曲线无法按幂函数进行拟合的现象。为便 于叙述,下文我们将卸载数据可以拟合为幂函数 形式的 P-h 曲线称为理想的 P-h 曲线 (当然,这 里的"理想"是一个相对的概念),相应地把卸载 数据不能拟合为幂函数形式的 P-h 曲线称为畸形 P-h 曲线。需要说明的是,"畸形"这个词在文献 报道中并没有出现过;在这里我们用"畸形"这 个词仅仅是为了便于将不理想的 P-h 曲线与理想 的 P-h 曲线相区分。我们不建议在正式发表的文 献中使用这个非共知共识的词汇。

畸形 P-h 曲线在高分子材料的纳米压痕实验 中经常观察到<sup>[125,126]</sup>,一个典型的例子示于图 45。 当然,高分子材料不是本文讨论的范畴,我们对 图 45 不做详细分析,感兴趣的读者可以阅读文献 [125]。这里只需说明一点:与金属材料和陶瓷材 料相比,高分子材料一个独特的性质是其显著的粘 弹性。粘弹性也是一种与时间有关的弹性行为,从 某种意义上说可以看成是极为严重的滞弹性<sup>[86]</sup>。如 图 45 所示的卸载初始阶段曲线的凸起以及后续 出现的连续高度弯曲就是粘弹性的具体表现。

粘弹性是高分子材料共有的特性。在对高分子材料进行纳米压痕实验时我们对所获得的 P-h 曲线的独特形状是有思想准备的,自然而然地会采用特殊的方法对数据进行分析。

对于金属材料和脆性陶瓷材料,畸形 P-h曲线的出现往往是无法预见的。图 46 示出了对表面 镀有一层厚度为 300 nm CN<sub>x</sub> 膜的硅样品进行纳 米压痕试样所获得的 P-h 曲线<sup>[127]</sup>。与前面所给 出的所有 P-h 曲线 (如图 7) 相比,这条曲线的 卸载部分显然有些不同,与图 45 相似也表现为一 条高度弯曲的连续弧线,只不过在卸载初始阶段 没有出现明显的凸起 ("Nose") 现象。这条卸载 曲线是不可能拟合成幂函数形式的。导致这种高

![](_page_29_Figure_3.jpeg)

图 45 在相同加载速率不同卸载速率下测得的聚丙烯 纳米压痕 P-h 曲线<sup>[125]</sup>

Fig. 45 *P*-*h* curves of polypropylene measured with same loading rate and different unloading rates <sup>[125]</sup>

![](_page_29_Figure_6.jpeg)

图 46 带有 CN<sub>x</sub> 膜层的硅样品纳米压痕 *P*-h 曲线<sup>[127]</sup> Fig. 46 Nanoindentation *P*-h curve of a silicon sample coated with a CN<sub>x</sub> film<sup>[127]</sup>

度弯曲连续弧线的主要原因可能在于<sup>[127]</sup>:卸载过 程中材料发生了很大程度的弹性恢复,以至于接 触面积连续减小。注意到测试图 46 所示 *P-h* 曲 线使用的峰值载荷 *P*<sub>max</sub> 只有 5 mN,我们可以猜 测在这个载荷水平下,材料在压痕过程中发生的 形变中可能只包括有微弱的塑性形变,主要表现 为弹性形变。

更为极端的一个例子示于图 47,这是对一种 电解抛光的钨单晶在极低的 P<sub>max</sub> (~ 0.5 mN) 下 进行纳米压痕试验所得到的结果<sup>[2]</sup>,曲线上包含 了4次反复的加载--卸载过程。加载曲线与卸载曲 线的高度重合说明在极低的载荷下材料的接触形 变几乎是理想的纯弹性。显然,对于这种纯弹性 的压痕试验,硬度测试就变得毫无意义了。

![](_page_29_Figure_11.jpeg)

纳米压痕 P-h 曲线<sup>[2]</sup>

![](_page_29_Figure_13.jpeg)

必须意识到商用的纳米压痕仪自身尚未有足够的能力判断如图 46 及图 47 所示实验现象是否发生;纳米压痕仪的数据处理软件会一如既往地对数据进行处理,输出相应的弹性模量和硬度数值。这时,纳米压痕仪输出的测试结果显然不可靠。因此,我们强烈地建议在使用纳米压痕仪直接输出的测试结果时仔细地分析相应的载荷--位移曲线数据。

对于脆性陶瓷来说,导致畸形 *P-h* 曲线出现的主要原因是材料的显微结构不均匀性。

可以理解的一个事实是:"畸形"毕竟不是"理 想"。在实验过程中即使观察到了"畸形",在大 多数情况下也会被当作异常数据而舍弃或者被当 作不好看的数据而雪藏。这可能是在公开发表的 文献中很少报道畸形 *P-h* 曲线的主要原因。到目 前为止,Gong 等人于 2005 年报道的一项工作<sup>[128]</sup> 可能是少有的几项全面分析陶瓷材料纳米压痕测 试畸形 *P-h* 曲线的工作之一。

在这项工作中, Gong 等人对一种高纯细晶氧 化铝陶瓷进行了纳米压痕实验。纳米压痕实验采 用的加载--卸载过程如图 48 所示:每一次测试均 包含了7个加载--卸载循环;每一个循环过程中, 加载时间为15 s,保荷时间为30 s,卸载时间为 15 s;第一次加载--卸载循环的名义 P<sub>max</sub>为 7.5 mN,之后每一次加载--卸载循环的名义 P<sub>max</sub>均为 前一次循环的2倍。这一加载方式的优点在于可 以在一个接触点上获得对应于不同 *P*<sub>max</sub> 的卸载 曲线及相应的初始卸载斜率。但是,由于与时间 有关的变形的影响,如果保荷时间过长,至少在 最后的几次加载--卸载循环测试中,峰值位移可 能会比一次性加载至相应的 *P*<sub>max</sub> 情况测得的值 偏大 (图 49)。这是在采用这一实验方法所必须 注意的。

![](_page_30_Figure_4.jpeg)

图 48 文献 [128] 中纳米压痕实验过程载荷-时间关系 Fig. 48 Load-time sequence used in the work of Gong *et al.* <sup>[128]</sup>

![](_page_30_Figure_6.jpeg)

![](_page_30_Figure_7.jpeg)

![](_page_30_Figure_8.jpeg)

Tab. 3

在 Gong 等人的工作<sup>[128]</sup>中采用如图 48 所示 的加载过程一共测试了 10 条 P-h 曲线。表 3 列 出了对这10条P-h曲线上各个峰值载荷处的hmax 值进行统计分析得到的结果。同一 $P_{\text{max}}$ 下 $h_{\text{max}}$ 测 试值的波动非常大,说明实验结果呈现出了明显 的离散性。这一离散性可以从材料显微结构不均 匀性角度加以解释。考虑到这一工作所用的氧化 铝是一种细晶陶瓷,平均晶粒尺寸约为 0.9 µm, 最小晶粒尺寸甚至只有 100 nm 左右, 因此, 可以 想象当压头与样品接触时,接触形变会在很大程 度上受到接触点及其附近显微结构特征的影响。 当接触点处于一个晶粒的中心位置时,接触变形 将主要由晶粒的性能决定;而如果接触点处于晶 界上或临近晶界,所测得的弹性模量和硬度显然 将会与晶粒上测得的结果有所不同;此外,材料 中存在的其他显微结构缺陷如气孔等也会对测试 结果产生显著的影响。

为了更好地说明显微结构不均匀性对材料压 痕行为的影响, Gong 等人<sup>[128]</sup>对实验获得的 *P-h* 曲线进行了分析。

图 50(a)中的曲线 A 在最小的峰值载荷  $P_{\text{max}}$  = 7.9 mN 处表现出了所有 10 个测试点中的最小  $h_{\text{max}}$  (93.5 nm),这似乎说明 A 点应该位于晶粒中 心区域。与曲线 A 相比,曲线 B 从加载一开始位 移的增大速度就远远高于曲线 A。注意到在  $P_{\text{max}}$  = 7.9 mN 处,曲线 B 给出了  $h_{\text{max}}$  = 117.3 nm,这 个  $h_{\text{max}}$  低于同一  $P_{\text{max}}$ 下  $h_{\text{max}}$ 的平均值 (表 3),可 以推测 B 点应该也是位于晶粒上,但显然这个晶 粒的表面应该对应于一个相对较软的晶面。

图 50(b)示出了另外两条 *P-h* 曲线前两个加载--卸载循环的数据。曲线 C 与图 50(a)中曲线 A 和曲线 B 情况相似,但峰值位移明显增大,说明 C 点抵抗压痕变形的能力更低一些。尤其值得注意的是,在卸载阶段,初期的载荷--位移关系还保持着较好的幂函数关系,当载荷降低到一定程度之后位移突然出现了急剧减小的现象。这似乎说

| 表 3 局纯细晶氧化铝陶瓷纳米                             | 上很头验峰值位移 h <sub>max</sub> 统              | 计结果[120]                    |
|---------------------------------------------|------------------------------------------|-----------------------------|
| Statistical properties of the penetration d | epth $(h_{\text{max}})$ measured at diff | ferent peak load levels for |

high-purity fine-grained alumina [128]

|                   | $P_{\rm max}$ / mN | 7.9   | 15.9  | 31.7  | 63.5  | 126.5 | 251.9  | 505.1  |
|-------------------|--------------------|-------|-------|-------|-------|-------|--------|--------|
| $h_{ m max}$ / nm | Minimum            | 93.5  | 146.9 | 224.4 | 338.5 | 490.6 | 682.7  | 992.3  |
|                   | Maximum            | 217.9 | 376.0 | 474.1 | 620.5 | 796.4 | 1014.7 | 1338.1 |
|                   | Average            | 144.2 | 227.4 | 321.2 | 446.0 | 600.9 | 824.5  | 1158.4 |
|                   | Standard deviation | 42.6  | 76.6  | 84.4  | 103.9 | 106.3 | 103.7  | 116.9  |

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

![](_page_31_Figure_2.jpeg)

图 50 高纯细晶氧化铝陶瓷几条典型 *P-h* 曲线的前两个加载-卸载循环<sup>[128]</sup> Fig. 50 Censored views of serveral *P-h* curves a high-purity fine-grained Al<sub>2</sub>O<sub>3</sub>, showing the first two loading-unloading cycles <sup>[128]</sup>

明压头接触到了一个三交晶界或者临近一个气 孔,这些显微结构特征对晶粒弹性恢复的阻力相 对小一些。这点在曲线 D 上可以更清楚地看到: 在加载阶段,位移在载荷增大到一定程度后就出 现急剧的增大,显然说明压头尖端遇到了一个形 变阻力更小的区域。曲线 D 在最小的峰值载荷 (*P*<sub>max</sub> = 7.9 mN) 处表现出了所有 10 个测试点中 的最大 *h*<sub>max</sub> (217.9 nm)。

注意到图 50 示出的是 P-h 曲线前两个加载-卸载循环,因此,异常实验数据更多的是由于样 品表面的显微结构特征所导致。图 51 对两条 P-h 曲线的最后两个加载--卸载循环进行了对比,其中 的曲线 A 就是图 50(a)的曲线 A。与曲线 A 相比, 曲线 E 的位移明显偏大。事实上,曲线 E 在最大 的峰值载荷 (P<sub>max</sub> = 505.1 mN) 处表现出了所有 10个测试点中的最大 hmax (1338.1 nm)。从图中可 以看出,在最后一个加载--卸载循环中,加载阶段 的载荷-位移关系先是沿着上一循环的卸载曲线 变化,超过上一循环的峰值载荷之后,再顺着上 一循环加载曲线的延长线方向变化,但是在位移 处于约 1000 nm-1170 nm 这个范围突然发生了偏 离, 位移变化速率明显增大, 之后, 又基本恢复 到之前的速率。这是一个非常有趣的现象,似乎 说明在 1000 nm-1170 nm 这个区域, 压头尖端跨 越了一条晶界,从一个晶粒穿越到了下一个晶粒。

上述的分析仅仅是依据 P-h 曲线形状进行的 推测,更可靠的结论只有通过对压痕位置处显微 结构进行直接观察才能得到。但是,上述分析已 经足以说明:当材料的显微结构特征尺寸与纳米 压痕的特征尺寸相当的情况下,将材料视为均匀 连续体的假设将不再成立,显微结构不均匀性对

![](_page_31_Figure_7.jpeg)

#### 图 51 高纯细晶氧化铝陶瓷几条典型 P-h 曲线的 后两个加载-卸载循环<sup>[128]</sup>

![](_page_31_Figure_9.jpeg)

测试结果的影响将变得显著起来,相应地在使用 卸载数据确定初始卸载斜率 (接触刚度)时也应 该小心谨慎。

对于Gong等人工作所考虑的10条 P-h曲线, 图 52 示出了纳米压痕仪直接输出的10个弹性模 量值和硬度值。这些数值是由纳米压痕仪的数据 处理软件对最后一次加载-卸载循环的卸载数据 进行分析所得到的结果。分析表明弹性模量 E 和 硬度 H 的变异系数 (即标准差与平均值之比)分 别高达18.89% 和23.66%。这一结果显然不合常 规,而导致测试结果不合常规的根本原因就在于 纳米压痕仪无法判断所测得的 P-h 曲线是"理想" 或"畸形"。

事实上,陶瓷材料纳米压痕弹性模量测试结 果呈现较大离散性的现象已经在很多研究<sup>[129,130]</sup> 1 2 3 4 5 6 7

Elastic nodulus, E/GPa

![](_page_32_Figure_2.jpeg)

0

![](_page_32_Figure_3.jpeg)

Sample number

![](_page_32_Figure_4.jpeg)

中观察到。Yan 等人<sup>[129]</sup>对 Ce<sub>1-x</sub>Ca<sub>x</sub>O<sub>2-v</sub> (x = 0.05, 0.10 和 0.20) 陶瓷进行了纳米压痕实验, 图 53 给 出了他们的部分结果。其中,图 53(a)是一条典型 的 P-h 曲线, 左上角则显示了在试样表面观察到 的一个典型的残余压痕,可以看出压痕跨越了多 个晶粒。图 53(b)是纳米压痕实验测得的材料弹性 模量随 CaO 添加量的变化关系。这里我们关心的 不是 CaO 添加量对性能的影响问题, 而是弹性模 量测试值的离散性,对于添加 20 at.% CaO 的材 料,所测得的弹性模量最低值约为 125 GPa,最 高值则高达约 325 GPa。如此大的差别可能就是 由显微结构不均匀导致的。

关于陶瓷材料显微结构对纳米压痕行为影响 的另一项有意思的研究是 Silva 等人<sup>[131]</sup>于 2018 年报道的。Silva 等人研究的材料是 CaZrO3-MgO 多相陶瓷,因为材料制备时使用的原料是 ZrO<sub>2</sub>、 CaO 和 MgO, ZrO<sub>2</sub> 的过量添加导致最终产品 中实际存在三相,分别是 CaZrO<sub>3</sub>、MgO 和立方 ZrO<sub>2</sub> (c-ZrO<sub>2</sub>)。为了测定材料中各相的弹性模量 和硬度,纳米压痕实验过程中对压痕位置进行了 仔细选择, 以确保压头与样品的接触点落在晶粒 上。图 54 示出了材料表面不同相晶粒上的压痕形 貌,图 55 则给出各个测试点所测得的弹性模量和 硬度值。首先值得注意的是,图 55 所示各相的测 试结果都呈现出了较为显著的离散性。晶粒可以 看成是一个单晶体,理论上说对单晶体进行测试 出现如此显著的离散性是不合理的,但是对于处 干多晶多相材料中的单晶,这种离散性则很容易 理解。从图 54 可以看到,至少对于 c-ZrO2 和 MgO 这两个晶粒,压痕位置并不是处于晶粒中心处, 而是非常接近于晶界。与晶粒中心相比, 弱晶界 的存在相当于减缓了对压痕形变的约束,而相邻 晶粒的存在则有可能对压痕形变产生另外的约 束,这两方面的因素将导致晶粒边缘处的压痕响 应与晶粒中心位置的压痕响应有所不同,这应该 是导致图 55 所示数据离散性的最可能因素。

考虑到显微结构不均匀性对 P-h 可能产生的 影响,建议在对细晶 (尤其是纳米晶) 材料或者 具有显著显微结构不均匀性 (如高气孔率、高第 二相含量等)的材料进行纳米压痕实验时,应仔 细选择压痕位置,以评价不同显微结构特征对结 果的影响。此外,在对实验数据进行分析时,对 重复试验所获得的结果进行比较以发现异常数据 也是十分必要的。

#### 3.7 位移突进

对材料进行的纳米压痕力学行为研究中,位 移突进 (Pop-in) 也是一个经常被提及的现象,指 的是在加载过程中,在某一个载荷水平下位移发 生了突然的增大。

![](_page_32_Figure_11.jpeg)

Fig. 53 (a) A typical P-h curve and (b) nanoindentation elastic modulus of  $Ce_{1-x}Ca_xO_{2-y}$  ceramics <sup>[129]</sup>

![](_page_33_Figure_3.jpeg)

图 54 CaZrO<sub>3</sub>-MgO 多相陶瓷表面不同相晶粒上的 Berkovich 压痕: (a) c-ZrO<sub>2</sub>; (b) CaZrO<sub>3</sub>; (c) MgO <sup>[131]</sup> Fig. 54 Berkovich indentation impressions of different phases on the surface of a multiphase CaZrO<sub>3</sub>-MgO ceramics: (a) c-ZrO<sub>2</sub>, (b) CaZrO<sub>3</sub> and (c) MgO <sup>[131]</sup>

![](_page_33_Figure_5.jpeg)

图 55 CaZrO<sub>3</sub>-MgO 多相陶瓷中各相弹性模量及硬度 测试结果<sup>[131]</sup>

![](_page_33_Figure_7.jpeg)

图 56 所示为采用球形压头对 4H SiC 进行压 痕实验所得到的一些 *P-h* 曲线的加载部分<sup>[132]</sup>。 为便于区分,图中右侧两条曲线的原点均进行了 向右平移处理。注意到各条曲线均出现了位移突 进,而且出现位移突进时所对应的载荷值都比较 接近 (~0.4 mN)。分析发现这些位移突进是由于 位错成核导致的:在位移突进发生之前,载荷-位移关系近似服从抛物线关系,表明压痕变形基 本表现为弹性;位移突进发生之后,载荷-位移关 系的斜率发生了一些变化,说明变形转变为了弹-塑性方式。因此,发生位移突进时所对应的载荷 可以认为是材料出现初始塑性的临界载荷。

![](_page_33_Figure_10.jpeg)

阶段 P-h 曲线<sup>[132]</sup> Fig. 56 Several P-h loading curves of 4H SiC measured with spherical indentations <sup>[132]</sup>

位错成核被认为是导致纳米压痕 P-h 曲线上 出现位移突进现象的一个重要因素<sup>[133,134]</sup>,在很 多材料中都观察到了位错成核引起的位移突进。 在 Oliver 和 Pharr 的原始工作中就曾经给出过一 个典型的例子,如图 57 所示。这是对电解抛光的 钨单晶在  $P_{max} = 1.6$  mN 的条件下进行纳米压痕 实验所得到的 P-h 曲线。在  $P \approx 1.0$  mN 附近,位 移发生了急剧的增大,这个载荷值对应于钨单晶 的塑性起始载荷。也就是说,钨单晶在 P < 1.0 mN 的情况下发生的变形是纯弹性的,如图 57 所示。

![](_page_33_Figure_13.jpeg)

![](_page_33_Figure_14.jpeg)

图 58 示出了对一种 ZrB<sub>2</sub>-5 vol% SiC 陶瓷测 得的纳米压痕 P-h 曲线<sup>[135]</sup>,其中图 58(a)所示曲 线是在 ZrB<sub>2</sub> 晶粒上获得的,图 58(b)所示曲线则 是在 SiC 晶粒上测得。也就是说位移突进现象只 发生在 ZrB<sub>2</sub> 晶粒。在所有 90 条在 ZrB<sub>2</sub> 晶粒上获 得的 P-h 曲线中,有 88 条出现了类似于图 58(a) 所示的现象,而剩余的 2 条没有表现出位移突进 现象的 P-h 曲线则是在两相界面附近测得的。这 说明位移突进是这种材料中 ZrB<sub>2</sub> 晶粒的特性。对 残余压痕进行的电镜观察表明压痕附近区域没有 微裂纹形成,而采用 Hertz 接触理论进行的分析 则表明这种位移突进应该与 ZrB<sub>2</sub> 晶粒中的位错 活性有关。

![](_page_34_Figure_3.jpeg)

图 58 一种 ZrB<sub>2</sub>-5 vol% SiC 陶瓷的纳米压痕 *P-h* 曲线<sup>[135]</sup> Fig. 58 Nanoindentation *P-h* curves of a ZrB<sub>2</sub>-5 vol% SiC ceramics<sup>[135]</sup>

图 59 示出了上述 88 条 *P-h* 曲线上的位移突 进量及相应的位移突进载荷之间的关系。数据呈 现出一定的规律,但具有较大的离散性。这一离 散性可以归因于不同压痕位置上材料性能及表面 状态的差异,如表面缺陷<sup>[136]</sup>、与晶界的距离<sup>[137]</sup> 以及晶粒尺寸<sup>[138]</sup>等。事实上,这与前面所讨论的 显微结构不均匀性影响问题是相似的,而图 51 所示的约 1000 nm-1170 nm 范围内位移的突变就 是一个典型的位移突进现象,如前所述,这个位 移突进可能与压头穿越晶界有关。

![](_page_34_Figure_7.jpeg)

Fig. 59 Pop-in load versus pop-in extent for ZrB<sub>2</sub>-5 vol% SiC ceramics<sup>[135]</sup>

另一个有意思的例子示于图 60。这是对金属 Al 测得的一条纳米压痕 P-h 曲线<sup>[139]</sup>:在加载阶 段,在载荷接近 0.1 mN 时出现了位移突进。在这 个例子中,位移突进是由于金属 Al 表面存在一层 很薄的氧化层:加载初期压头在氧化层上,载荷-位移关系表现为氧化层的特性;在氧化物与 Al 的界面处,由于形变阻力突然减小,位移急剧增 大;之后,压头尖端进入 Al 基体,后续的载荷-位移关系则表现为 Al 基体的特性。

![](_page_34_Figure_10.jpeg)

位移突进现象<sup>[139]</sup> Fig. 60 Nanoindentation *P-h* curve of bulk aluminum showing pop-in phenomenon<sup>[139]</sup>

此外,位移突进也可以因为相变<sup>[140,141]</sup>、微 开裂<sup>[142]</sup>等诸多因素而导致。图 61 示出了一个微 开裂导致位移突进现象的例子<sup>[142]</sup>。图中的三条 P-h曲线是对熔融石英进行测试得到的。首先需要注意的是,在曲线b和曲线c上位移突进发生时所对应的载荷都非常高,这应该不是位错成核的标志,而是微开裂的标志。曲线a的加载部分直至 $P_{max}$ 仍然保持光滑,没有观察到位移突进现象;曲线b在 $P_{max} \approx 50$  mN附近发生了位移突进,之后载荷-位移关系与曲线a发生了偏离;曲线c上的位移突进则出现在 $P_{max} \approx 100$  mN附近,之后载荷-位移关系也偏离了曲线a,并很快与曲线b重合。从卸载曲线上看,曲线b和曲线c这两种情况下,微开裂导致卸载曲线的位置和斜率与曲线a相比发生了一定程度的变化。这种由微开裂导致的位移突进已经被用于考察裂纹起始条件<sup>[143,144]</sup>或直接用于材料断裂韧性测定<sup>[142,145]</sup>。

![](_page_35_Figure_3.jpeg)

图 61 微开裂对熔融石英纳米压痕 P-h 曲线的影响<sup>[142]</sup> Fig. 61 Effect of microcracking on the nanoindentation P-h curves of fused silica<sup>[142]</sup>

对位移突进现象可以很直观地理解为:在受 力压入材料表面的过程中,压头在某一个位移处 遇到了一个变形阻力相对较小的区域,于是位移 的变化速率增大,而载荷则仍然按照预设的速率 增大;载荷增加速率赶不上位移变化速率,便在 载荷-位移关系曲线上表现出了位移突进。按照这 一直观的理解不难得出一个结论: 位移突进是否 发生以及发生的程度应该与加载速率有关,这一 点从如图 62 的 P-h 曲线上可以清楚地看出。图 62 示出的是采用不同加载速率对两种金属玻璃 (Pd-40Ni-20P和 Zr-10Al-10Ni-15Cu)进行纳米 压痕实验所得到的结果<sup>[134]</sup>,图中只示出了 P-h 曲线的加载部分。可以看出,在所采用的最高加 载速率 (对于 Pd-40Ni-20P 为 20 mN/s; 对于 Zr-10Al-10Ni-15Cu则为5 mN/s)下,曲线上几 乎看不出位移突进的存在;而随着加载速率的降 低, 位移突进开始出现, 突进的次数也随着加载 速率的降低而增多。因此,对于弹性模量和硬度 测试来说,有必要采用较高的加载速率;而对于 观察和分析位移突进现象而言,较低的加载速率 则更为合适。

在很多情况下,即便是在加载阶段发生了位 移突进,卸载阶段的数据也能很好地符合幂函数 关系 (如图 51、图 58 和图 61 所示),而至于由卸 载数据导出的材料性能 (弹性模量 *E* 和硬度 *H*) 是否合理则需要根据具体情况进行具体分析。一 般说来,由位错成核导致的位移突进应该不影响 最终性能测试结果的可靠性,因为位错成核意味 着塑性变形的起始,而前述的纳米压痕理论是针 对弹-塑性变形情况建立的。当然,如果在不同载 荷水平下连续出现了与位错运动有关的位移突进 就另当别论了。对于微开裂导致的位移突进,情 况则有所不同。如图 61 所示,微开裂导致了卸载

![](_page_35_Figure_9.jpeg)

图 62 两种金属玻璃典型纳米压痕 *P-h* 曲线的加载部分: (a) Pd-40Ni-20P; (b) Zr-10Al-10Ni-15Cu<sup>[134]</sup> Fig. 62 Loading portions of some typical nanoindentation *P-h* curves measured on two metallic glasses: (a)Pd-40Ni-20P;(b)Zr-10Al-10Ni-15Cu<sup>[134]</sup>

![](_page_36_Figure_2.jpeg)

![](_page_36_Figure_3.jpeg)

曲线斜率的变化,这时由初始卸载斜率确定的弹 性模量严格地说只是含裂纹体的刚度,并不是真 正材料力学意义上的弹性模量。而对于由显微结 构不均匀所导致的位移突进,情况就更为复杂一 些。从宏观尺度上说,弹性模量是一个对显微结 构不敏感的材料性能参数<sup>[86]</sup>。然而,纳米压痕却 是在显微结构尺度上进行的,所得到的弹性模量 (甚至可能包括硬度)本质上说应该是一个显微 结构尺度意义上的参数,在显微结构不均匀性影 响较为显著的情况下,纳米压痕技术测得的结果 与宏观力学测试所得到的结果理论上应该不存在 可比性。

需要指出的是,由于本征的脆性,陶瓷材料 在压痕过程中极易发生微开裂现象。但是并不是 所有微开裂都会导致纳米压痕 P-h 曲线上出现位 移突进现象。图 63 所示为对 8 mol% Y<sub>2</sub>O<sub>3</sub> 全稳定 的 ZrO<sub>2</sub> (8Y-FSZ) 单晶进行纳米压痕实验 (Pmax = 1900 mN) 所观察到的情况<sup>[146]</sup>。图 63(a)所示的 P-h 曲线上没有任何位移突进的迹象, 而图 63(b) 所示的试样表面残余压痕顶角附近则出现了极为 显著的微开裂。考虑到微开裂可能导致所测得的 弹性模量和硬度偏离真实值,因此,建议对陶瓷 材料进行纳米压痕实验时,应尽可能避免使用太 高的峰值荷载,并对试样表面残余压痕的形貌进 行必要的观察。

顺便提一下,在对一些材料进行纳米压痕实 验时,在卸载阶段也观察了位移突变的现象。图 64 示出了采用球形压头对单晶硅进行纳米压痕 实验所得到的一条 P-h 曲线<sup>[147]</sup>:在卸载到 P≈28 mN 时位移出现了一个突然的减小。与位移突进 (Pop-in) 相对应,这种现象通常称为位移突退 (Pop-out)。借助于纳米压痕技术研究单晶硅相变 是一个普遍关心的研究方向[140, 148, 149], 一般认为 对于单晶硅的纳米压痕实验,加载阶段出现的位 移突进与 Si-I 相到 Si-II 相的转变有关, 而卸载阶 段出现的位移突退则与 Si-II 相到 Si-XII 和 Si-III 相的混合相或无定型相的转变有关<sup>[147]</sup>。

![](_page_36_Figure_8.jpeg)

图 64 单晶硅球形压头纳米压痕试验得到的 P-h 曲线<sup>[147]</sup> Fig. 64 P-h curve of spherical nanoindentation on single crystal silicon<sup>[147]</sup>

#### 接触面积 4

从一定意义上说,接触刚度的确定是一种直 接的方法:通过对待测样品进行测试,只要获得 了精确的载荷-位移数据并借助于幂函数 (或其 他形式的函数)对卸载数据进行了准确的描述, 就可以通过对函数求导而得到初始卸载斜率作为 对应于峰值载荷的接触刚度值。相对而言,接触 面积的确定就显得稍微间接一些,需要借助于对 标准样品进行的测试建立起一个面积函数,然后 应用于待测样品。正是这种间接性质使得近年来 对面积函数标定可靠性以及接触面积计算准确性 的研究成为一个热点。

本章将对这些相关研究进行总结和分析。

#### 4.1 残余压痕形貌

从 2.4 节的讨论中可以知道, OP 方法中面积 函数的标定涉及到两个关键点:一是接触深度 *h*c 的确定,二是标准样品的选择。

根据 Oliver 和 Pharr 的分析,在对压痕卸载 数据按幂函数式(8)拟合后,接触深度 h<sub>c</sub>可以由式 (13)直接确定。由式 (13)可知,接触深度 h<sub>c</sub>小 于位移 h,二者间的偏差由压痕载荷 P 和初始卸 载斜率 S 决定: S 越大,二者间的偏差越小。必 须意识到的是,式 (13)的基础是弹性接触力学; 将式 (13)应用于确定弹-塑性材料压痕行为描 述时或多或少会引进一些误差。本节我们首先通 过对试样表面残余压痕形貌的简单分析<sup>[150]</sup>来说 明导致这些误差的原因。

一般来说金属材料抵抗塑性形变的能力较 差,在压痕的卸载阶段发生弹性恢复的程度较小, 因此往往表现出较大的初始卸载斜率,如图7(e) 和 (f) 所示; 在极端的情况下, 式 (13) 中的第 二项将趋近于零,这时材料表面的残余压痕形状 近似接近于理想状态,如图 65(b)所示。陶瓷材料 的情况则正好相反,材料抵抗塑性形变的能力很 强,在峰值载荷作用下,材料表面除了发生塑性 形变外, 塑性形变区外围的弹性基质也会相应发 生一定程度的弹性形变,导致包围着塑性压痕的 一个局部区域发生弹性下沉,产生一个弹性位移 hs, 如图 4 所示。在载荷完全去除后, 弹性形变 的恢复不仅发生在压头压入方向,同时也会发生 在试样表面:随着表面弹性下沉区域的恢复,压 痕的棱边也会在弹-塑性失配应力作用下向压痕 中心方向发生弯曲,如图 65 (c) 所示。类似的情 况在一些高硬度金属材料中也可以观察到。

注意到在式 (13) 的推导过程 (参见 2.4 节) 中已经考虑了表面沉陷的因素,所以一般来说, 对于图 65(b)和图 65 (c) 所示的这两种情况,借 助于式 (13) 确定的 *h*。相对是较为精确的。但是 对于接触面积的计算来说,图 65(a)所示的残余压 痕形状与压头横截面形状一致,理论上说几乎不 会导致接触面积计算结果的误差;而图 65(b)所示 的形状则稍稍偏离压头横截面的理想情况,OP 方法提出的面积函数 (式 (15))中引进的低阶项 可以较好地修正这一偏差。

一些极端脆性的材料在压痕过程中会发生严 重的表面沉陷,最终的残余压痕形状如图 65 (d) 所示。这种情况在对较软基体上的硬质薄膜进行 纳米压痕实验时经常遇到:当载荷去除后,硬质 膜层的弹性恢复受到的阻力主要来自较软的基 体,与块体脆性材料相比,这样的阻力明显要小 得多,因此,残余压痕棱边向压痕中心方向的弯 曲程度会明显加剧<sup>[151]</sup>。在这种情况下,由式 (13) 计算得到的接触面积偏大。

相反地,如果是对较硬基体上的软质薄膜进行纳米压痕实验,软质薄膜对硬质基体弹性恢复的阻碍作用会很弱,从而导致压痕周围发生表面凸起 (Pile-up)现象(图 65 (a))。这种情况在块体材料中也经常观察到。图 66 对表面凸起和表面沉陷进行了对比<sup>[152]</sup>。由于在式 (13)的推导过程中并没有考虑表面凸起的因素,因此,在出现了表面凸起现象的情况下式 (13)将给出一个偏小的 h<sub>c</sub>计算结果,从而导致由面积函数计算得到的接触面积偏小。

### 4.2 表面凸起

Bolshakov 等人<sup>[153]</sup>采用有限元方法分析了纳 米压痕实验中表面凸起对力学性能测试精度的影 响问题。研究表明,材料在压痕过程中是否发生 表面凸起现象不但与压头形状有关,更与材料自 身性能 (主要是折合模量 *E*<sub>r</sub>、屈服强度*σ*<sub>ys</sub>以及加 工硬化程度) 有关。一般说来,具有较大 *E*<sub>r</sub>/*σ*<sub>ys</sub> 的材料或加工硬化程度较高的材料 (如在压痕之 前经历了冷加工的软金属) 在压痕过程中更容易 发生表面凸起现象。具有一定加工硬化能力的材 料可以通过压痕过程中的应变硬化来抑制表面凸

![](_page_37_Figure_12.jpeg)

图 65 Berkovich 压头在材料表面引进的残余压痕形状示意图: (a)凸起; (b)无凸起无沉陷; (c)沉陷; (d)严重沉陷<sup>[150]</sup> Fig. 65 Schematic illustrations of the shapes of Berkovich residual impression: (a) pile-up, (b) no pile-up or sink-in, (c) sink-in and (d) excessive sink-in<sup>[150]</sup>

![](_page_38_Figure_3.jpeg)

图 66 纳米压痕实验中表面凸起和表面沉陷示意图<sup>[152]</sup> Fig. 66 A schematic illustration of pile-up and sink-in effects during nanoindentation<sup>[152]</sup>

起的发生,而在压痕之前已经发生了较大程度加 工硬化的材料则有点类似于前述软基硬膜的情况,倾向于发生表面凸起。

图 67 给出了 Bolshakov 等人<sup>[153]</sup>得到的部分 有限元模拟结果。将一个半锥角为 70.3 ° 的圆锥 形压头压入材料表面,设定材料的弹性常数为 *E* = 70 GPa 和 $\nu$ = 0.25,但材料的屈服强度 $\sigma_{ys}$ 则设 定在 0.114 GPa-26.620 GPa 范围内变化。Hay 等 人考虑了两种试样状态,一种是加工硬化率 $\eta$ = 0 的试样,另一种则是线性加工硬化率 $\eta$ = 10 $\sigma_{ys}$ 的 试样。图 67 中的  $h_{max}$ 和  $h_f$ 分别为压痕实验中的 峰值位移和试样表面残余压痕的深度,后者采用 OP 方法通过对卸载曲线进行分析而得到。考虑到  $h_f/h_{max}$ 可以处理为一个与 $h_{max}$ (或 $P_{max}$ )无关的常 数,且 0 ≤  $h_f/h_{max}$  ≤ 1 ( $h_f/h_{max}$  = 0 对应于纯弹性接 触的情况,而 $h_f/h_{max}$  = 1 则对应于刚性—塑性接触 的情况),由图 67 可以看出, $h_f/h_{max}$ 可以用作判 断材料在压痕过程中是否发生表面凸起的一个简 单判据:只有在 h<sub>f</sub>/h<sub>max</sub> 非常接近于1 且压痕过程 中试样几乎不发生加工硬化的情况下才会出现明 显的表面凸起;而在 h<sub>f</sub>/h<sub>max</sub> < 0.7 时,无论试样在 压痕过程中是否发生了加工硬化,压痕过程导致 的表面凸起都十分微弱,或者表现为表面沉陷。

为了进一步评价表面凸起和表面沉陷对接触 面积的影响, Bolshakov 等人<sup>[153]</sup>进一步采用不同 方法计算了各种情况下的接触面积,结果如图 68 所示。图中, AME 为直接通过有限元分析确定的 真实接触面积, Aop 为采用 OP 方法通过分析卸载 曲线确定的接触面积,而 ATH 则是在假定不发生 任何表面凸起或表面沉陷的情况下由压头形状决 定的接触面积,即纯弹性条件下的理论接触面积。 根据上一小节的讨论, A/ATH > 1 对应于表面凸 起,而A/A<sub>TH</sub> < 1则对应于表面沉陷。从图 68 可 以看出,在材料发生了表面凸起的情况下,A<sub>ME</sub>> AOP, 即 OP 方法明显低估了接触面积。在 0.7 <  $h_f/h_{max} ≤ 1$ 的范围内,对于不易于发生加工硬化的 材料,即便是表面沉陷而不是表面凸起, OP 方法 也明显低估了接触面积;对于易于发生加工硬化 的材料,OP方法则可以对接触面积作出比较准确 的估计。在实际的压痕实验过程中,几乎不可能 通过对载荷-位移数据的分析来判断材料是否发 生了加工硬化。因此,如果对卸载数据的分析得 到了 h<sub>f</sub>/h<sub>max</sub> > 0.7 的结果, 就需要特别小心地考虑 OP 方法确定的接触面积的可靠性。

如果借助于 h<sub>f</sub>/h<sub>max</sub> 值或者其他材料性能参数 判断材料有可能发生了较为显著的表面凸起,则 有必要对残余压痕进行实际观察 (比如 SEM 或 其他手段) 以确定表面凸起的程度并测定真实的

![](_page_38_Figure_10.jpeg)

![](_page_38_Figure_11.jpeg)

![](_page_38_Figure_12.jpeg)

![](_page_39_Figure_2.jpeg)

![](_page_39_Figure_3.jpeg)

接触面积。对于 Berkovich 压痕来说,通过实际 观察判断表面凸起显著性的依据是压痕边棱向外 弯曲的程度 (参见图 66)。

在发生了显著表面凸起的情况下,将不能使用由OP方法确定的面积函数计算接触面积。1992年建立的 OP 方法可以算得上是近乎完美的,后续的一些研究只不过是对其做一些修补工作。可能是因为表面凸起导致的面积函数失效是 OP 方法所面临的为数不多的无法解决的问题之一,在2004年那篇综述论文<sup>[4]</sup>中,Oliver 和 Pharr 甚至用了"Holy Grail"这个词来形容这个问题,将其列为了纳米压痕研究的"终极目标"之一。关于在表面凸起条件下使用纳米压痕技术测定材料力学性能的研究因此也得到了很大程度的重视。

Cheng 等人 20 世纪末到 21 世纪初开展的一系列工作<sup>[64, 65, 154, 155]</sup>在这方面具有一定的特色。他们借助于有限元分析手段,从压痕功的角度分析了压痕参数与材料性能之间的关系。图 69 示出了有限元分析结果。此外,图 69(b)也给出了一些

实际材料的实测结果。图中的压痕功是以 P-h 曲线 为基础获得的:加载曲线下方的面积即为总压痕功  $W_t$ ,卸载曲线下方的面积为弹性恢复消耗的功 $W_u$ , 而  $(W_t - W_u)$ 则为压痕塑性功 $W_p$  (参见图 42)。

图 69(a)表明,在 h<sub>f</sub>/h > 0.4 (或 W<sub>p</sub>/W<sub>t</sub> > 0.2) 的 条件下, (W<sub>p</sub>/W<sub>t</sub>) 与 (h<sub>f</sub>/h) 之间近似存在如式 (33) 所示的线性关系:

$$\frac{W_{\rm p}}{W_{\rm t}} = (1+\gamma)\frac{h_{\rm f}}{h} - \gamma \tag{33}$$

对图 69(a)所示数据进行线性拟合可以得到 $\gamma$  = 0.27。

而由图 69(b)则可以看出, 压痕功参数 (W<sub>p</sub>/W<sub>t</sub>) 与材料性能参数 (H/E<sub>r</sub>) 之间也近似存 在着如式 (34) 所示的线性关系:

$$\frac{W_{\rm p}}{W_{\rm t}} = \kappa \frac{H}{E_{\rm r}} \tag{34}$$

这就提供了一条避开接触面积直接确定材料 性能的可能途径。

注意到 Joslin 和 Oliver<sup>[156]</sup>曾经结合式(4)和式 (7)导出了以下关系式,如式 (35):

$$\frac{4}{\pi} \frac{\beta^2 P_{\text{max}}}{S^2} = \frac{H}{E_{\text{r}}^2}$$
(35)

Oliver 和 Pharr <sup>[4]</sup>认为  $W_p$ 、 $W_t$ 、 $P_{max}$ 和 S 这 些参数都可以通过载荷-位移曲线直接获得,因 此,联立式(34)和式(35)就可以解出 H 和  $E_r$ ;而 根据解出的 H 值即可通过式(7)计算出接触面 积 $A_o$ 

有不少研究涉及到了表面凸起对接触面积的 影响问题<sup>[157-159]</sup>。对于陶瓷来说,其本征的脆性 使得压痕卸载阶段的弹性恢复一般都比较显著, 在绝大多数情况下都满足 h<sub>f</sub>/h<sub>max</sub> < 0.7 这一条件,

![](_page_39_Figure_18.jpeg)

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

根据 Bolshakov 等人<sup>[153]</sup>的分析,表面凸起的影响 在陶瓷材料中几乎可以忽略不计。

#### 4.3 分析纳米压痕数据的双斜率法

这里顺便提一下式(35)的另一个有意思的应 用——分析纳米压痕数据的双斜率法。

OP 方法是以分析 P-h 曲线的卸载部分为基础建立的。2001年, Oliver<sup>[160]</sup>又进一步提出了一个结合分析加载曲线和卸载曲线以确定材料性能的双斜率方法。这也是一个避开接触面积直接确定材料性能的方法,但这一方法除了需要借助于 OP 方法中关于卸载曲线的数学描述内容之外,还涉及到了加载曲线的数学描述。

压痕加载阶段的载荷-位移通常采用如式 (36)的经验公式加以描述:

P = Kh<sup>2</sup>
 (36)
 式中的 K 是一个与材料性能和压头形状有关
 的经验常数。尽管这一经验公式的适用性已经分
 別通过实验<sup>[127]</sup>、有限元分析<sup>[161]</sup>、量纲分析<sup>[154]</sup>
 等方法进行了验证,但式中系数 K 的物理意义并
 不明确。

对式 (36) 的物理本质开展研究的基本思路 最早是由 Loubet 等人<sup>[162]</sup>提出的,在这项工作中, 压痕过程中的总变形被分解为塑性组元和弹性组 元两部分。基于这一思路, Hainsworth 等人<sup>[127]</sup> 从式 (6) 出发导出了一个描述纳米压痕加载阶 段载荷与位移之间的关系式 (具体推导过程参见 文献 [127]),如式 (37):

$$P = E\left(\phi^* \sqrt{\frac{E}{H}} + \psi^* \sqrt{\frac{H}{E}}\right)^{-2} h^2$$
(37)

式中的的**ø**\* 和**w**\* 为经验常数。

与式 (36) 相比,式 (37) 虽然明确了经验常 数 *K* 与材料性能参数之间的关系,但同时又引进 了两个新的经验常数 $\phi^*$  和 $\psi^*$ 。通过对一系列材 料的纳米压痕数据进行的拟合分析,Hainsworth 等人<sup>[127]</sup>给出了 $\phi^*$  和 $\psi^*$  的经验值: $\phi^* = 0.194$ ,  $\psi^* = 0.930$ 。而之后 Jha 等人<sup>[163]</sup>采用一种简单的 分析方法又将这两个经验值进一步修正为: $\phi^* =$ 0.182, $\psi^* = 0.725$ 。为了更进一步阐明这两个经 验常数的物理意义,Malzbender 等人<sup>[164]</sup>按照 Hainsworth 等人<sup>[127]</sup>的分析思路、利用 OP 方法中 的一些关系式导出了一个新的关系式(具体推导 过程参见文献 [164]),如式(38):

$$P = E_{\rm r} \left( \frac{1}{\sqrt{C_0}} \sqrt{\frac{E}{H}} + \frac{\varepsilon}{\beta} \sqrt{\frac{\pi}{4}} \sqrt{\frac{H}{E}} \right)^{-2} h^2 \qquad (38)$$

式中的 C<sub>0</sub> 为压头形状常数, ε 为之前在式 (12)中出现过的另一个压头形状常数; β 则为之 前在式(4)中出现的常数。

式 (38) 与式 (37) 具有完全相同的形式。对 于 Berkovich 压头有: $C_0 = 24.5$ 、 $\varepsilon = 0.75$ 、 $\beta = 1.05$ 。 于是由式 (38) 即可计算得到式 (37) 中两个待 定常数的具体数值:  $\phi^* = 0.202$ ,  $\psi^* = 0.633^*$ 。

Oliver 的双斜率法<sup>[160]</sup>就是基于式 (38) 提出的。由式 (38) 可获得加载曲线的斜率 *S*<sub>L</sub>,如式 (39):

$$S_{\rm L} = \left(\frac{\mathrm{d}P}{\mathrm{d}h}\right) = 2E_{\rm r} \left(\frac{1}{\sqrt{C_0}}\sqrt{\frac{E}{H}} + \frac{\varepsilon}{\beta}\sqrt{\frac{\pi}{4}}\sqrt{\frac{H}{E}}\right)^{-2}h$$
(39)

结合式 (39) 和式(4)可以得到式 (40):

$$\frac{S_{\rm L}}{S} = \frac{E_{\rm r}}{H\sqrt{\pi C_0}} + \frac{\varepsilon}{2} \tag{40}$$

再结合式 (40) 和式 (35) 以消除 *H* 便得到 了折合模量 *E*<sub>r</sub>的一个表达式,如式 (41):

$$E_{\rm r} = \sqrt{\frac{\pi}{C_0}} \frac{1}{2\beta P} \left( \frac{S^2 S_{\rm L}}{2S - \varepsilon S_{\rm L}} \right) \tag{41}$$

利用式 (41) 和式(4)可以导出接触面积,如式 (42):

$$A = C_0 P^2 \left(\frac{2S - \varepsilon S_L}{SS_L}\right)^2 \tag{42}$$

最后,根据式 (42) 和式(7)得到式 (43):

$$H = \frac{1}{C_0 P} \left(\frac{2S - \varepsilon S_{\rm L}}{SS_{\rm L}}\right)^{-2} \tag{43}$$

这就导出了双斜率法确定材料弹性模量 E 和 硬度 H 所需的所有公式。

图 70 示出了采用双斜率法对熔融石英和金 属 W 的纳米压痕数据进行分析所得到的硬度和 弹性模量随压头位移的变化曲线,同时示于图 70 的还有采用理想压头的面积函数以及采用 OP 方 法标定的面积函数分别计算得到的结果。由于纳 米压痕实验数据是通过连续刚度实验测得的,因 此,在小位移范围内数据出现了异常大或异常小 的现象。从图 70 可以看出,在大位移情况下,三 种方法分别确定的 H和 E 均表现为与位移无关的 常数,且相互之间吻合得较好。这就初步证实了 双斜率法的适用性。

<sup>\*</sup> 在文献 [164] 中,式 (38) 中未出现修正因子β, 计算采 用的是ε=0.72, 因而相应得到 ψ=0.638。

![](_page_41_Figure_0.jpeg)

![](_page_41_Figure_1.jpeg)

双斜率法自 2001 年提出以来,并没有引起太 多的关注,实际研究工作中应用双斜率法的实例 也不多见。这其中的原因可能与加载曲线数学描 述方面存在的不确定性有关。至少,在 Oliver 的 分析过程<sup>[160]</sup>中所使用的式 (38) 是针对理想压 头形状导出的,而实际压头的尖端总是存在有一 定程度的钝化,这将导致式(8)与实际情况之间存 在一定程度的偏差,从而影响双斜率法的测试精 度<sup>[165]</sup>。

此外,双斜率法还有另外一个基本的假设, 即材料的硬度为常数。这显然不合理,因为大量 的研究已经发现,即使是在纳米尺度上进行测试, 材料硬度的压痕尺寸效应也是普遍存在的<sup>[166,167]</sup>。

# 4.4 压头尖端钝化物理模型

纳米压痕实验是在极低的载荷下进行,接触 过程所发生的位移非常小,因此,压头尖端的几 何形状成为了一个尤其重要的因素。Doerner 和 Nix<sup>[70]</sup>指出在压痕深度小于 1  $\mu$ m 的条件下通过压 痕方法 测定硬度和弹性模量时,压头尖端确切形 状的确定是即为关键的。如图 5 所示,在接触深 度小于 1  $\mu$ m 时,由压头理想形状计算得到的接 触面积明显低于实测接触面积;在  $h_c \approx 20$  nm时, 二者甚至相差约 3 倍。这一实验结果表明:实际 压头的尖端与理想情况相比应该是严重钝化的。

在 1.2 小节中曾经提到,由于机械加工精度

的限制,几乎所有压头的尖端处都不可能是完全 理想尖锐状态<sup>[57]</sup>;进而,在压头后续的使用过程 中,反复的压入有可能导致压头尖端发生进一步 的钝化<sup>[58]</sup>。图 71 所示为一个钝化的压头尖端示 意图。由于机械加工精度限制以及后续使用过程 发生的磨损,压头尖端将形成了一个半径为R的 球面,球面的高度为 $\delta$ ,而球面端部到理想状态 压头尖端处的距离为 $h_d$ 。在文献中, $h_d$ 通常被称 为压头尖端有效截断长度 (Effect Truncation Length)。

![](_page_41_Figure_8.jpeg)

图 71 钝化的压头尖端示意图<sup>[164]</sup> Fig. 71 Schematic illustration showing the geometry of a rounded indenter tip<sup>[164]</sup>

根据简单的几何分析不难得到,如图 71 所示的尖端钝化压头在试样表面引进的残余压痕投影面积可以由式(44)给出<sup>[168]</sup>:

$$A = C_0 (h_c + h_d)^2$$
 (44)

式中的  $C_0$ 为压头形状参数。对于 Berkovich 压头,  $C_0 = 24.5$ 。式(44)表明:由于  $h_d$ 的引进, 在同一接触深度  $h_c$ 条件下,尖端钝化压头在试 样表面引进的残余压痕投影面积将大于理想 尖锐压头的情况,这就解释了如图 5 所示的实验 现象。

将式 (44) 代人式(4)可得到式 (45):  

$$S = \frac{dP}{dh} = \beta \frac{2}{\sqrt{\pi}} E_{\rm r} \sqrt{C_0} (h_{\rm c} + h_{\rm d})$$
(45)

式(45)表明,初始卸载斜率 *S* 与接触深度 *h*<sub>c</sub> 之间呈线性关系,由这一线性关系的斜率可以确 定材料的弹性模量 *E*,而由截距则可确定压头尖 端有效截断长度 *h*<sub>d</sub>。

Sawa 和 Tanaka<sup>[169]</sup>对式 (45)的适用性进行 了较为系统的实验研究,他们的工作是与测试系 统的机架柔度标定一起展开的。事实上,在许多 关于压痕试验仪标定方法的研究中,接触面积的 标定与机架柔度的标定都是作为一个整体同时进 行的<sup>[170-172]</sup>。Sawa 和 Tanaka<sup>[169]</sup>通过将式(17)与 式(44)相结合得到式 (46):

$$C_{t} = \frac{\sqrt{\pi}}{2\beta E_{r}\sqrt{C_{0}}} \frac{1}{(h_{c} + h_{d})} + C_{m}$$
(46)

作为研究工作的一个基本出发点。他们使用 了 5 台不同厂商生产的纳米压痕仪 (各自配备 Berkovich压头)对4种不同的材料进行了纳米压 痕实验;而后采用反复迭代法对实验数据进行分 析,得到了如图 72 所示的实验结果。图中的A、 B、C、D、E分别代表 5 台不同的纳米压痕仪。

注意到图 72 中的横坐标为 (*C*t - *C*m),即初 始卸载斜率 *S* 的倒数,因此,由图 72 可以看出, 对于给定的材料和给定的压头,式 (45) 总是成立 的。但是同时也应该注意到,对于不同的材料, 对同一压头进行标定所得到的 *h*d值存在一定的波 动。类似的现象在 Gong 等人的工作<sup>[9]</sup>中也有所报 道。这似乎说明,式 (44) 对接触面积的修正还过 于简单,漏掉了一些影响接触面积的重要因素。 这一点将在下一小节中加以讨论。

但是在大多数情况下,借助于式 (44) 描述 接触面积也可以获得较为理想的结果。图 73 所示 为根据图 72 给出的标定结果计算得到的材料弹 性模量值。可以看出,在所考虑的整个峰值载荷

![](_page_42_Figure_14.jpeg)

图 72 采用不同材料对不同纳米压痕仪进行机架柔度及压头形状进行标定得到的结果<sup>[169]</sup> Fig. 72 Calibrating results of frame compliance (*C*<sub>m</sub>) and effective truncation length of indenter tip (*h*<sub>d</sub>) with different machines for different materials<sup>[169]</sup>

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

![](_page_43_Figure_3.jpeg)

![](_page_43_Figure_4.jpeg)

Fig. 73 Reduced modulus calculated with the calibrating results shown in Figure 72 for different materials<sup>[169]</sup>

范围内,由不同纳米压痕仪测得的同一材料的弹 性模量值基本保持不变。此外,图 73 还给出了 Oliver-Pharr 工作中蓝宝石 (Sapphire) 和玻璃的 测试结果。两种方法所得结果之间的一致性进一 步验证了式 (44) 和式 (45) 的适用性。

由于具有简单实用的特点,式 (44) 经常被 用于纳米压痕数据的分析<sup>[173,174]</sup>。事实上,在前 面提到的式(8)的推导过程中,Malzbender 等 人<sup>[164]</sup>就进一步采用式 (44) 描述了压头钝化对 加载曲线数学表达式的影响,并将式(8)进一步改 写为式 (47):

$$P = E_{\rm r} \left( \frac{1}{\sqrt{C_0}} \sqrt{\frac{E}{H}} + \frac{\varepsilon}{\beta} \sqrt{\frac{\pi}{4}} \sqrt{\frac{H}{E}} \right)^{-2} (h + h_{\rm d})^2 (47)$$

为了更好地从力学理论上阐明尖端钝化压 头对接触面积的影响,一些学者也先后提出了 几个描述尖端钝化压头的物理模型。Loubet 等 人<sup>[175,176]</sup>对压头尖端缺陷的研究可能是这方面最 早的一批工作,也是后来一些重要理论研究的基 础,虽然他们的工作中并没有涉及到压头尖端钝 化问题。后来又分别出现了一些旨在确定压头尖 端形状函数的研究<sup>[177,178]</sup>。这里我们着重介绍 Thurn 和 Cook<sup>[177]</sup>建立的物理模型。Thurn-Cook 模型如图 74 所示。其中,图 74(a)为一个锥角为 2*ψ* 的圆锥形压头,压头尖端位于 *Z*=0;压头端 部与试样保持接触状态,接触深度为 *h*<sub>c</sub>,对应的 接触半径为 *a*。注意到如图中所示,试样表面发 生了一定程度的沉陷。由这一构型可以根据式 (48) 写出压痕的形貌为:

$$Z_1 = r \cot \psi$$

(a)  

$$Z = r \cot \psi$$

$$| \neq 2a \rightarrow |$$

$$h_c$$

$$r$$

$$| \neq 2a \rightarrow |$$

$$h_c$$

$$r$$

$$(c)$$

$$Z$$

$$I/Z = I/(r \cot \psi) + 2R/r^2$$

$$h_c$$

$$r$$

图 74 Thurn-Cook 模型示意图: (a) 锥角为 2ψ 的圆锥形 压头;(b) 半径为 R 的球形压头;(c) 对(a)和(b)进行调和 平均得到的尖端钝化压头<sup>[177]</sup>

Fig. 74 Schematic illustration of the Thurn-Cook model: (a) cone of included angle of  $2\psi$ , (b) sphere of radius *R* and (c) the harmonic average of (a) and (b) <sup>[177]</sup>

图 74(b)则为一个半径为 *R* 的球形压头与试 样接触的情况,同样接触深度为 *h*<sub>c</sub>,对应的接触 半径为 *a*。在 *r* << *R* 的情况下,压痕的形貌可根 据式 (49) 计算:

$$Z_2 \approx \frac{r^2}{2R} \tag{49}$$

假定一个实际压头的尖端可以处理为上述两种理想情况的调和平均(图 74(c)),则可得式 (50):

$$\frac{1}{h_{\rm c}} = \frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{a \cot \psi} + \frac{2R}{a^2}$$
(50)  
式 (50) 可以改写为式 (51):

$$h_{\rm c} = a \cot \psi \left( 1 + \frac{2R \cot \psi}{a^2} \right)^{-1} \approx a \cot \psi - 2R \cot^2 \psi$$
(51)

由式(51)解出接触半径 *a*,即可计算出实际压 头在给定接触深度 *h*c下的接触面积,如式(52):

$$A = \pi a^{2} = \frac{\pi h_{c}^{2}}{\cot^{2} \psi} + 4R\pi h_{c} + 4R^{2}\pi \cot^{2} \psi$$
(52)  
为便于拟合分析,可以将式(52)改写为式

(48)

(53):

$$\mathbf{A} = \left(\frac{h_{\rm c}}{C_1} + \frac{C_1}{C_2}\right)^2 \tag{53}$$

式中的 C<sub>1</sub>和 C<sub>2</sub>分别为与ψ 和 R 有关的常数。 式(53)与式(44)在形式上是一致的,但前者显然具 有更明确的理论基础,后者则是通过简单的几何 分析得到的。

考虑到式(51)只有在  $h_c > 0$  的前提下才能成 立,因此有:  $a/2R > \cot \psi$ 。对于 Berkovich 压头, 这就意味着  $a \ge R$ 。也就是说, Thurn–Cook 模型 只有在接触深度较大的前提下才有效。

为了验证模型的适用性, Thurn 和 Cook<sup>[177]</sup> 对两种玻璃 (熔融石英和钠钙玻璃)进行了压痕 实验,借助于 SEM 量测了试样表面残余压痕的面 积,并与式(52)的计算结果进行了对比,结果如 图 75 所示。显然,在接触深度不太小的情况下, 二者之间吻合得很好。

![](_page_44_Figure_8.jpeg)

图 75 两种玻璃残余压痕投影面积 SEM 实测值与 式(52) 计算值的对比<sup>[177]</sup>

Fig. 75 Comparison between the imaged area (by SEM) and the calculated area with Eq. (52) for two glasses <sup>[177]</sup>

Bei 等人的物理模型<sup>[178]</sup>给出的面积函数与 Thurn-Cook 模型相似,与式 (52)相比只是少了 一个常数项,如式 (54):

 $A = \alpha_2 h_c^2 + \alpha_1 h_c \tag{54}$ 

式中的 $\alpha_1$ 和 $\alpha_2$ 为常数。Bei 等人指出,式中的第一项代表了理想压头的情况,而第二项则与 压头尖端球面半径 R 有关:  $\alpha_1 = 2\pi R$ 。

此外,Antunes 等人<sup>[179]</sup>、Berla 等人<sup>[180]</sup>以及 Fischer-Cripps <sup>[57]</sup>也分别提出了几个不同的物理 模型用于考虑压头尖端钝化对接触面积的影响, 建立这些物理模型的基本思路与 Thurn 和 Cook 的工作大体相似,这里不再详述。此外,Chicot 等人<sup>[181]</sup>在对这些模型进行对比分析的基础上,提出了一个基于已知压头尖端有效截断长度的面积函数,这个函数的应用需要预先采用高分辨率显微镜对压头尖端进行定量表征,并不便于实际应用。

与其他物理模型相比, Thurn-Cook 模型一个 突出的特点就是继续分析了压头尖端形状变化的 影响<sup>[177]</sup>。如果把图 74(b)所示的球形压头换成 2.3 小节中提到的"等效压头", 即压头的形貌用式(9) 描述, 则接触深度可以写成式 (55):

$$\frac{1}{h_{\rm c}} = \frac{1}{Z_1} + \frac{1}{Z} = \frac{1}{a\cot\psi} + \frac{1}{Ba^n}$$
(55)

考虑 n = 3 (即 m = 1.33) 情况,式 (55) 可以 改写为式 (56):

$$a = \frac{h_{\rm c}}{2\cot\psi} \pm \frac{h_{\rm c}}{2\cot\psi} \left(1 + \frac{4\cot^3\psi}{Bh_{\rm c}^2}\right)^{1/2}$$
(56)

将式中的第二项展开,即可得到式 (57):

$$a = \frac{h_{\rm c}}{2\cot\psi} \pm \frac{h_{\rm c}}{2\cot\psi} \left(1 + \frac{2\cot^3\psi}{Bh_{\rm c}^2} - \frac{\cot^6\psi}{2B^2h_{\rm c}^4} + \frac{\cot^9\psi}{4B^3h_{\rm c}^6} + \dots\right)$$
(57)

根据式(58)可得相应的面积函数:

$$\mathbf{A} = \pi a^2 = \frac{\pi h_c^2}{\cot^2 \psi} + \sum_{i=0}^{\infty} C_i h_c^{-2i}$$
(58)

式(58)与 OP 方法中提出的经验面积函数 (式 (15))很相似,似乎在某种意义上为 OP 方法面积 函数的合理性提供了一些佐证。

分别采用式(52)所示的两参数面积函数和式 (58)所示的多参数面积函数确定的不同材料弹性 模量和硬度值示于图 76。其中,采用式(58)计算 接触面积时只取了前 8 项。可以看出,两参数面 积函数和八参数面积函数在材料性能确定方面似 乎没有显著的区别。下文中我们将看到,这是一 个比较有意义也有一定实用价值的结论。

#### 4.5 预标定面积函数的局限性

现在我们来讨论 OP 方法中提出的面积函数 —— 式 (15)。

在 OP 方法<sup>[2]</sup>以及国际标准 ISO 14577-1-2015<sup>[5]</sup>中,面积函数式(15)中的系数都是通过 对标准样品进行压痕实验,而后对实验数据进行 拟合分析而得到的。由于这一标定在对待测材料 进行测试之前借助于标准样品进行,因此,本文 将 OP 方法中的面积函数称为预标定面积函数,

![](_page_45_Figure_3.jpeg)

图 76 采用不同面积函数计算得到的弹性模量和硬度: (a) 两参数面积函数; (b) 八参数面积函数<sup>[177]</sup> Fig. 76 Elastic modulus and hardness calculated using different area functions: (a) two-parameter area function and (b) eight-parameter area function<sup>[177]</sup>

而由预标定面积函数计算得到的接触面积则称为 预标定接触面积。

式(15)提出之后,其确定接触面积的精度问 题就一直受到学者们的普遍关注。早在 2001 年, Sawa 和 Tanaka<sup>[169]</sup>就指出:尽管 Oliver 和 Pharr 提出的面积函数标定方法本身十分巧妙而且精 细,但这一方法的应用却需要高超的技艺。在这 一方法的实际应用中存在的主要问题包括<sup>[169]</sup>: (1) 面积函数的拟合精度严重依赖于迭代分析中 选取的第一个初始值,因此,即使是采用同一组 压痕实验数据,往往也得不到一组确定的系数值: (2) 在压痕实验过程中,压头尖端处的几何形状 会因为磨损而发生变化,因此,需要对面积函数 进行周期性的标定,这是一件非常繁琐的工作; (3) Sawa 和 Tanaka 发现,即使采用同一个压头在 同一台纳米压痕仪上进行实验,对不同材料进行 标定所得到的面积函数也可能不一样,似乎说明 面积函数可能不仅仅只由压头形状决定。

Sawa 和 Tanaka 的上述说法仅仅是基于他们 在实验室进行的一些摸索性实验,之后他们报道 的工作则是上一小节中提到的对式(44)适用性的 研究。对他们这些说法的进一步支持则来自后来 其他许多学者的工作。本小节中,我们结合 Sawa 和 Tanaka 的上述说法对 OP 方法中提出的预标定 面积函数的局限性进行简要讨论。

Sawa 和 Tanaka 提出的第一个问题涉及到迭 代分析结果的可重复性。式(15)中除了首项用于 描述理想压头几何形状之外,还包含了 8 个低阶 项。即使不考虑压头真实形状(面夹角、棱夹角 等)与理想状态之间的差异,8 个低阶项就需要 8 个待定系数。从数学上说,如此多的待定系数对 于迭代分析无疑是一个很大的工作量。因此,我 们首先讨论式(15)中采用 8 个低阶项的必要性。

在 2004 年的综述中, Oliver 和 Pharr 分别采 用两种方法确定了面积函数系数标定值, 所得到 的两组系数具体数值列于表 4。方法 I 是对很宽 的压入深度(比如 10 nm-1500 nm)范围内获得 的数据进行拟合,拟合过程中首先对压头的面夹 角进行测量确定面积函数首项系数,而后再限定 其他 8 项的系数均为正值。由这一方法标定的面 积函数计算得到的接触面积(预标定接触面积) 与实测值之间的偏差示于图 77(a):在接触深度大 于 200 nm 的条件下,预标定面积与实测值之间的 偏差在 1% 以内,而在接触深度较小的条件下, 二者间的偏差可高达 4%。拟合面积函数的第二 种方法(方法 II)则有效地提高了小深度范围内 的标定精度。方法 II 限制了拟合所用的压入深度 范围,但不限制 8 个低阶项的系数必须为正值。 由方法 II 的预标定接触面积与实测值之间的偏差 示于图 77(b)。

现在我们用表 4 所列数据,分别取含有所有 8 个、前 6 个、前 4 个和前 2 个低阶项的式(15) 计算接触面积(计算结果分别用 A<sub>8</sub>、A<sub>6</sub>、A<sub>4</sub>和 A<sub>2</sub> 表示),计算结果示于图 78,图中的纵坐标为 A/A<sub>8</sub> (其中的 A 分别为 A<sub>6</sub>、A<sub>4</sub>和 A<sub>2</sub>)。可以看到,在接 触深度不是很小的条件下,采用不同数量低阶项 计算得到的接触面积之间的偏差都非常小,这些 偏差与面积函数自身存在的偏差(图 77)相比几乎 可以忽略不计。

图 78 所示结果似乎说明:尽管式(15)中出现 了 8 个低阶项,但在实际应用中往往只需要前几 项即可实现对实验数据的精确描述。事实上,有 不少研究<sup>[182-184]</sup>就只是选取了式(15)前几个低阶 项对实验数据进行拟合以获得预标定面积函数。

Sawa 和 Tanaka 提出的第二个问题涉及到面积函数的周期性标定。如果在实际研究过程中需要采用预标定接触面积计算材料性能,那么对压头进行周期性标定以随时监控压头尖端的磨损状态确实是必要的。这一点可以借助于 Cech 等人<sup>[185]</sup>近期的一项工作加以证实。在这项工作中,Cech 等人采用三个不同磨损程度的 Berkovich 压头对熔融石英进行了压痕实验,图 79 示出了部分典型的实验结果。图中压头的三种状态 (状态 I、状态 II 和 III) 分别是同一个 Berkovich 压头经历

![](_page_46_Figure_8.jpeg)

![](_page_46_Figure_9.jpeg)

| 表 4 不同方法拟合得到的面积函数系数值 <sup>到</sup>                                                                    |    |
|------------------------------------------------------------------------------------------------------|----|
| Tab. 4 Values of the coefficients included in Eq.(15)obtained using different methods <sup>[4]</sup> | 4] |

|       | 1 ( )     | 8                  |   |
|-------|-----------|--------------------|---|
|       | Method I  | Method II          | - |
| $C_0$ | 24.65000  | 24.2618496939950   | _ |
| $C_1$ | 202.70000 | 388.7154784795610  |   |
| $C_2$ | 0.03363   | -937.7231805614820 |   |
| $C_3$ | 0.93180   | 251.5353435276130  |   |
| $C_4$ | 0.02827   | 451.3309707784060  |   |
| $C_5$ | 0.03716   | 219.0195548567790  |   |
| $C_6$ | 1.76300   | -157.7402858201290 |   |
| $C_7$ | 0.04102   | -98.1240614964975  |   |
| $C_8$ | 1.88100   | -72.6226884095761  |   |

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

![](_page_47_Figure_0.jpeg)

![](_page_47_Figure_1.jpeg)

了不同程度的使用之后的状态,状态 I和状态 III 之间压头的使用时间跨度大约两年:在两种状态 之间, 压头均经历了大约 10<sup>4</sup>次压痕实验。因此, 三种状态下的压头尖端 (近似处理为球形) 半径 R 呈明显增大趋势。从图 79 可以看出, 三条 P-h 曲线之间呈现出了显著的差异。如果不考虑压头 的磨损,采用对状态I压头进行标定得到的面积函 数计算这三种情况下的弹性模量,得到的结果如 图 80 所示<sup>[186]</sup>。显然,状态 II 和状态 III 压头测试 得到的结果在小位移条件下出现了明显的偏差。 Sawa 和 Tanaka 提出的第三个问题 —— 对不同 材料进行的标定实验可能获得不同的面积函数 —— 或许可以看成是预标定面积函数的一个致 命缺陷。之所以这么说,是因为 OP 方法中的面 积函数标定是针对压头而不是针对材料进行的, 也就是说式(15)描述的是压头几何形状而不是材 料表面残余压痕的形状。因此,隐含在 OP 工作 中的一个基本假设是:通过标准样品 (如熔融石 英)标定的面积函数可以直接用于其他待测

作<sup>[2, 44]</sup>中并没有加以考虑。相反,在关于"等效 压头形状"概念的讨论<sup>[73]</sup>中, Pharr 和 Bolshakov 曾经指出,"等效压头形状"(即式(9)中的指数 n) 除了取决于实际压头的形状之外,还与待测材料 有关。这就意味着,采用同一个压头对不同材料 进行实验时,在材料表面引进的残余压痕形状会 因为材料的不同而存在一些差异。

材料。然而,这一假设在 Oliver 和 Pharr 的工

前面提及的 Cech 等人的工作<sup>[185]</sup>为上述讨论 提供了一个佐证。在这项工作中, Cech 等人借助 于原子力显微镜 (Atomic Force Microscopy, AFM) 观察并对压头的几何形状进行了定量表 征,从而获得了不同压入深度下由压头形状决定 的接触面积,如图 81 中实线所示;而后,采用这 个压头对熔融石英和 BK7 玻璃分别进行了压痕 实验,通过对实验数据的分析计算了接触面积。 当然, Cech 等人计算接触面积时依据的并不是式 (15), 而是直接利用式(4)和已知的材料弹性模量 值,如式 (59):

![](_page_47_Figure_5.jpeg)

![](_page_47_Figure_6.jpeg)

![](_page_47_Figure_7.jpeg)

![](_page_47_Figure_8.jpeg)

![](_page_47_Figure_9.jpeg)

59)

$$A = \frac{\pi S^2}{4\alpha^2 E_{\rm r}^2} \tag{6}$$

计算得到的接触面积以数据点的形式示于图 81。不难看出,由纳米压痕数据计算得到的接触 面积不但与由压头形状确定的接触面积之间存在 偏差,而且还表现出了明显的材料依赖性:同样 的压入深度下,BK 玻璃的接触面积比熔融石英 稍微大一些。图 81 中示出的另外一组接触面积是 在修正了压头径向位移量测可能存在的误差而得 到的。这里不展开讨论。

![](_page_48_Figure_5.jpeg)

图 81 不同方法得到的熔融石英 (FS) 和 BK7 玻璃 纳米压痕接触面积<sup>[185]</sup> Fig. 81 Comparison between the nanoindentation contact areas determined with different methods for fused

silica (FS) and BK7 glass<sup>[185]</sup>

Hang 等人的工作<sup>[184]</sup>则是直接采用单晶硅和 一种铝合金的压痕实验数据按 OP 方法进行面积 函数标定,结果如图 82 所示。图中的 A<sub>TH</sub> 为根据 压头理想形状计算得到的理论面积函数,即 A<sub>TH</sub> = 24.5h<sub>c</sub><sup>2</sup>,而 A<sub>Si</sub>和 A<sub>AI</sub>则分别为对单晶硅和铝合金 进行标定得到的结果。A<sub>Si</sub>与 A<sub>AI</sub>之间存在的偏差 证实预标定面积函数确实与材料有关。

![](_page_48_Figure_9.jpeg)

Fig. 82 Pre-calibrated area functions of single crystal silicon and aluminum alloy <sup>[184]</sup>

除了 Sawa 和 Tanaka 所考虑的三个问题之外, 预标定面积函数还有其他的一些局限性。

首先,注意到表 4 所示数据是对同一个压头 采用不同的实验方法和拟合方法得到的,这些数 据本身就说明,预标定面积函数的系数在很大程 度上依赖于数据拟合过程。尤其是,方法 I 是在 10 nm-1500 nm 压入深度范围内进行拟合,而方 法 II 则是在压入深度小于 500 nm 的范围内进行 拟合。二者拟合结果间的差异说明压痕深度范围 的选择对预标定面积函数也有一定的影响。因此, Oliver 和 Pharr<sup>[4]</sup>也指出:应该根据所关注的压入 深度范围建立相应的面积函数。

其次,在每一次的压痕实验过程中,压头与 试样之间的接触状态严格地说都是不一样的。一 种典型的情况是<sup>[172]</sup>:在进行数量较大的重复性实 验 (如需要在同一个样品上采用不同的峰值载荷 或峰值位移进行实验且每个峰值下均需测试多个 点)时,通常的做法是在纳米压痕仪上设定好测 试流程,让纳米压痕仪自动完成所有测试,即: 在压制了一个压痕之后,压头将自动移动到下一 个点压制下一个压痕。在这种情况下,如果在上 一个压痕的压制过程中,试样在与压头之间的接 触过程中产生了一定程度的磨损,导致接触表面 形成碎屑而附着在压头表面,那么在下一个压痕 的压制过程中,这些附着的碎屑将对测试结果产 生一定的影响。

再者,作为标准样品,即便在纳米尺度上也 基本上表现出较为均匀的显微结构特征。但是, 对于更多的实测材料而言,晶界、气孔等显微结 构不均匀性特征甚至晶粒的各向异性都可能导致 局部的压痕响应发生变化。从接触面积标定的角 度分析,在压痕过程中,一个微小气孔或一条晶 界存在于接触面上就会导致材料局部变形阻力 (尤其是局部弹性模量)的变化,从而影响到初始 卸载斜率。不难预期,不同的显微结构特征就会 导致不同的面积函数。

基于上述讨论,可以认为 OP 方法中提出的 面积函数 (式 (15)) 仅仅是一个经验函数,这个 函数中待定系数的数值取决于诸多因素。

最后,再顺便提一下由 Liu 等人报道的一项 工作<sup>[187]</sup>。在这项工作中,Liu 等人首先采用 OP 方法对石英晶体的纳米压痕数据进行了面积函数 标定,结果如图 83(a)所示。首先值得注意的是, 如果增加了极小位移 (*h*<sub>c</sub> < 38 nm) 情况下的实 验数据 (图中空心符号所示),所得到的标定结果 将偏离在接触深度 h<sub>c</sub> > 38 nm 范围内标定的曲线,这说明 OP 方法获得的面积函数确实与压入 深度的选取范围有关。另一个更有意义的现象是 OP 面积函数在极小位移时出现了一个奇异点,这 显然是不合理的。这一结果进一步说明 OP 面积 函数确实仅仅是一个经验函数。

为了消除 OP 面积函数出现的奇异点, Liu 等 人又进一步提出了一个新的面积函数<sup>[187]</sup>, 如式 (60):

 $A = M_0 h_c^4 + M_1 h_c^3 + M_2 h_c^2 + M_3 h_c$ (60)  $\exists t = M_0 - M_3$   $b \neq c \gg b_c$ 

图 83(b)对这个新面积函数与 OP 面积函数进 行了对比。在 h<sub>c</sub> > 40 nm 的范围内,两个函数所 分别给出的曲线相互重合,均能很好地描述实验 数据所呈现的变化规律;在极小的位移下,新面 积函数消除了 OP 面积函数中出现的奇异点,因 此似乎更为合理。采用 OP 面积函数和新面积函 数分别计算了材料的硬度和弹性模量,结果如图 84 所示:在位移较大的情况下,二者给出了较为 接近的结果,而在小位移情况下,新面积函数给 出的结果与 OP 面积函数相比有了明显的改善。

#### 4.6 面积函数的自标定

上一小节的讨论指出了预标定面积函数存在 的一些局限性。克服这些局限性的一个根本途径 显然就是寻找出一种替代方法。

首先,这种替代方法需要能够解决预标定面积函数可能存在的材料依赖性问题。解决这一问题应该是比较简单的。事实上,根据 OP 方法中预标定面积函数的流程,如果面积函数式(15)中的首项确实可以由压头的理想几何形状确定,那么对于任何一种待测材料,我们只需在不同接触深度 h。下获得相应的初始卸载斜率 S,对 S-h。关系按照式(15)进行拟合,即可由第一项系数的拟合值直接得到弹性模量(式(4))。

![](_page_49_Figure_10.jpeg)

图 83 (a) OP 面积函数的奇异点; (b) Liu 等人提出的新面积函数与 OP 面积函数比较<sup>[187]</sup> Fig. 83 (a) OP area functions with singularity and (b) new area function proposed by Liu *et al.* compared with the OP area function<sup>[187]</sup>

![](_page_49_Figure_12.jpeg)

图 84 以不同面积函数为基础确定的熔融石英硬度及弹性模量值<sup>[187]</sup> Fig. 84 Comparison between the mechanical properties (*H* and *E*) of fused silica determined with different area functions<sup>[187]</sup>

· 230 ·

但是,上一小节中,影响面积函数的因素还 包括有拟合数据范围的选取、不同测试点处显微 结构特征的微小变化、压头与试样之间的相互作 用等等。即使是对同一种材料进行测试,这些因 素也会因测试点的不同而发生轻微的变化,最终 影响面积函数中各待定系数的具体数值。因此, 一个理想的面积函数标定过程应该是在具体 的纳米压痕实验过程中对面积函数实现同步自 标定。

面积函数的同步自标定意味着需要在一次加 载-卸载循环的测试过程中获得接触刚度随接触 深度的变化关系。对于连续刚度实验来说,这是 很容易实现的。所谓连续刚度实验,就是在实验 过程中同步测定接触刚度随压入深度的变化关 系。事实上,表4及图77所示的实验结果就是通 过连续刚度实验获得的。但是必须指出的是,到 目前为止,连续刚度测试数据的可靠性仍然不是 很明确。本文前言中曾经提及,由于简谐力频率、 振幅等的变化对测试结果会产生一定程度的影 响<sup>[29-31]</sup>。图85给出了采用不同谐振频率和振幅对 熔融石英和单晶铝进行连续刚度测试所得到的结 果<sup>[31]</sup>。简谐力频率和振幅的变化对熔融石英接触 刚度测试结果影响几乎可以忽略,但对单晶铝的 影响则非常显著。这一结果说明,对熔融石英采 用连续刚度测试以标定面积函数应该不会受到测 试条件变化的影响,但对于其他材料,连续刚度 测试是否适用则需要借助于更进一步的实验加以 验证。

此外,由连续刚度实验测得的材料性能在某些情况下与准静态压痕实验的测试结果之间可能也并不能相互吻合<sup>[188]</sup>。图 86 所示为对熔融石英和钢分别在不同加载速率下进行准静态压痕实验和连续刚度实验所得到的结果。实验结果对加载速率的依赖性可能与材料的应变硬化有关。但很显然,即使是在同样的加载速率条件下,准静态压痕实验和连续刚度实验给出的结果之间也存在有较大的偏差。对于熔融石英的弹性模量而言,也只是在合适的加载速率(0 s<sup>-1</sup>-0.05 s<sup>-1</sup>)范围内才观察到了两种方法测试结果之间较好的吻合性。

最近, Gong 等人<sup>[189,190]</sup>提出了一种由准静态 压痕实验 *P-h* 曲线直接进行面积函数自标定的方 法。这一方法所依据的一个基本理论考虑是:如 果纳米压痕实验的卸载阶段的确是一个纯弹性过

![](_page_50_Figure_8.jpeg)

图 85 连续刚度测试甲值振频率与振幅对按照刚度的影响。<sup>3</sup> Fig. 85 Effect of harmonic frequency and amplitude on the measurement results of the contact stiffness<sup>[31]</sup>

![](_page_51_Figure_0.jpeg)

![](_page_51_Figure_1.jpeg)

程,那么卸载数据就可以借助于 Sneddon 的分析 解式(1)加以描述;而由式(1)则可以直接得到接触 刚度, 如式 (61):

$$S = \left(\frac{\mathrm{d}P}{\mathrm{d}h}\right) = \alpha m h^{m-1} \tag{61}$$

将式(1)代入式 (61) 得到式 (62):  $S = m\left(\frac{P}{h}\right)$ (62)

式 (62) 表明, 接触刚度与 P/h 成正比。

图 87 给出了钠钙玻璃和两种多晶陶瓷 (Y<sub>2</sub>O<sub>3</sub>和 ZrO<sub>2</sub>)的纳米压痕实验结果<sup>[189]</sup>。可以看 出,对于给定的材料,由 OP 方法确定的接触刚 度 (初始卸载斜率) S与压痕参数 Pmax/hmax之间确 实成正比关系,只是比例系数明显偏高:OP方法 得到的 m 值一般在 1.25-1.51 范围 (表 1), 而图 87 给出的三个斜率值均在 3 以上。借助于 3.4 节 中提及的 Gong 等人的工作<sup>[9]</sup>可以对这一现象做 出合理的解释: Sneddon 分析解<sup>[49]</sup>所针对的对象 是一个各向同性、应力自由的无限大弹性半空间, 而实际压痕实验卸载阶段所考虑的则是一个存在 有压痕残余应力的凹陷表面<sup>[9]</sup>;因此,实际压痕 过程的卸载数据应该用 Sneddon 分析解的一个修 正形状 —— 式 (20) 加以描述。

![](_page_51_Figure_7.jpeg)

![](_page_51_Figure_8.jpeg)

图 88 示出了对纳米压痕卸载曲线按式 (20) 拟合得到的  $P_0$ 和  $h_f$ 与压痕峰值载荷  $P_{max}$  及峰值 位移  $h_{\text{max}}$ 之间的关系<sup>[189]</sup>。可以看出,  $P_0$ 与  $P_{\text{max}}$ 之间以及 $h_f 与 h_{max}$ 之间均分别存在线性关系;也 就是说  $P_0$ 与  $P_{\text{max}}$ 之间以及  $h_f$ 与  $h_{\text{max}}$ 之间都成正 比关系。P0与Pmax之间的正比关系是早期压痕断 裂力学中经常采用的一个近似处理[111, 112]:为了

![](_page_52_Figure_2.jpeg)

Fig. 88 (a)  $P_0 - P_{\text{max}}$  relations and (b)  $h_f - h_{\text{max}}$  relations for three brittle materials <sup>[189]</sup>

定量描述压痕残余应力的影响,通常将作用在压 痕弹-塑性边界处的失配应力处理为一个作用在 压痕接触点上的点力,这个点力与压痕载荷成正 比。而 h<sub>f</sub> 与 h<sub>max</sub>之间的正比关系也在早期关于显 微硬度压痕弹性恢复的研究中得到了理论和实验 的证实<sup>[191-193]</sup>。

由式 (20) 可以得到式(63):

$$S = \left(\frac{\mathrm{d}P}{\mathrm{d}h}\right)_{h=h_{\mathrm{max}}} = 2a_2(h_{\mathrm{max}} - h_{\mathrm{f}}) \tag{63}$$

将式(20)代入式(63), 并  $P_0 = \alpha_P P_{max}$ 、 $h_f = \alpha_h h_{max}$ , 即得到式(64):

$$S = \left(\frac{\mathrm{d}P}{\mathrm{d}h}\right)_{h=h_{\mathrm{max}}} = \frac{2(1+\alpha_{\mathrm{P}})}{1-\alpha_{\mathrm{h}}} \left(\frac{P_{\mathrm{max}}}{h_{\mathrm{max}}}\right) = m_0 \left(\frac{P_{\mathrm{max}}}{h_{\mathrm{max}}}\right)$$
(64)

式中的 m<sub>0</sub>为常数。式 (64) 与式 (62) 相比 较显然就可以对图 87 中偏高的比例系数做出合 理的解释。

虽然图 87 和图 88 所示结果是在一些指定的  $P_{\text{max}}$  水平进行实验所得到的,但是可以合理地推断,对于任意指定的  $P_{\text{max}}$  水平也应该具有同样的规律。也就是说,在一个具体的纳米压痕实验过程中,如果在任意的一个  $P_{\text{max}}$  水平卸载,对卸载曲线进行分析所得到的  $S 与 (P_{\text{max}}/h_{\text{max}})$ 都应该满足式 (64)所描述的关系。这是一个非常有意思的结论。借助于式(8)或式 (20)对卸载数据进行拟合分析得到初始卸载斜率 S,借助于式 (64)计算出常数  $m_0$ ;而后,对于加载曲线上的每一测试点 (P, h)分别计算出对应的卸载斜率  $S_N$ ,如式 (65):

$$S_{\rm N} = m_0 \left(\frac{P}{h}\right) \tag{65}$$

最后,再由式 (13) 计算出相应的接触深度 hc,如式 (66)

$$h_{\rm c} = h - \varepsilon \frac{P}{S_{\rm N}} \tag{66}$$

这就实现了借助于一条实测的 P-h 曲线获得 接触刚度 S<sub>N</sub> (这里用 S<sub>N</sub>表示以区别于初始卸载斜 率 S) 随接触深度 h<sub>c</sub>变化关系的目的。为便于叙 述,在本文后续讨论中,我们将这种确定接触刚 度的方法简称为新方法。

图 89 将新方法确定的接触刚度 S<sub>N</sub> (实心符 号)与连续刚度测试所得到的结果 (空心符号) 进行了对比<sup>[189]</sup>。对于同一种材料,两种方法所得 到的接触刚度变化趋势是一致的。对于钠钙玻璃, 两种方法所得结果基本吻合,而对于两种多晶陶 瓷 (Y<sub>2</sub>O<sub>3</sub>和 ZrO<sub>2</sub>),式 (65)的计算结果似乎稍稍 大于连续刚度测试结果。这是可以理解的,前面 已经提到,连续刚度测试结果在某些情况下会受 到谐振频率和振幅的影响。因此,图 89 所示结果 初步验证了新方法的适用性。

图 90 给出了新方法确定的接触刚度 S<sub>N</sub> 随接 触深度 h<sub>c</sub>的变化关系。图中的纵坐标为接触刚度 的平方 S<sub>N</sub><sup>2</sup>。之所以选择 S<sub>N</sub><sup>2</sup>为纵坐标,是因为如 式(4)所示,接触刚度的平方与接触面积之间呈正 比关系。注意到图 90 中所有的曲线均可以近似用 一个二次多项式加以描述,如式 (67):

$$S_{N}^{2} = \alpha_{2}h_{c}^{2} + \alpha_{1}h_{c} + \alpha_{0}$$
式中的 $\alpha_{2}$ 、 $\alpha_{1}$ 和 $\alpha_{0}$ 为待定系数。
(67)

根据 4.4 和 4.5 两小节的讨论,面积函数含有 一个与 h<sub>c</sub><sup>2</sup>成正比的首项和一些 h<sub>c</sub>的低阶项。1.3 小节介绍的 Doerner-Nix 工作<sup>[70]</sup>中就曾经将面积 函数拟合为一个二次多项式;4.4 小节介绍的物理

![](_page_53_Figure_0.jpeg)

图 89 由式 (65) 确定的接触刚度 (实心符号) 与连续刚度实验测试结果 (实心符号) 的对比<sup>[189]</sup> Fig. 89 Comparison between the contact stiffness (S<sub>N</sub>) determined based on Eq. (65) (solid symbols) and the results obtained by continuous stiffness measurements (open symbols)<sup>[189]</sup>

![](_page_53_Figure_2.jpeg)

图 90 新方法确定的接触刚度随接触深度的变化关系<sup>[189]</sup> Fig. 90 Variation of the contact stiffness determined based on Eq. (65) with contact depth<sup>[189]</sup>

模型中大多也预测低阶项只需两项,而 4.5 小节的讨论更指出,OP 方法中的面积函数往往也只需要少数几个低阶项就可以实现对实验数据的精确描述。因此,可以根据式(4)将式(67)近似地改写成式(68):

$$S_{\rm N} == \frac{2\beta}{\sqrt{\pi}} E_{\rm r} \left( \alpha'_2 h_{\rm c}^2 + \alpha'_1 h_{\rm c} + \alpha'_0 \right)^{1/2} \tag{68}$$

式(68)右边括号中的式子即为一个近似的面积函数。与 OP 方法中的预标定面积函数相区别, 这个面积函数则可以称为自标定面积函数。

注意到对于 Berkovich 压头,面积函数的首 项 $\alpha'_2 = 24.5$ ,因此,可以通过对如图 90 所示的 曲线进行拟合获得 $\alpha_2$ ,进而直接计算出折合模量, 如式(69):

$$E_{\rm r} = \frac{\sqrt{\pi}}{2\beta} \sqrt{\frac{\alpha_2}{24.5}} \tag{69}$$

根据折合模量 *E*<sub>r</sub>即可得到材料的弹性模量 (式(2))。结合折合模量和峰值载荷处的接触刚度,

则可以由式(4)确定峰值载荷处的接触面积(称为 自标定接触面积)A<sub>N</sub>,进而由式(7)计算得到硬 度H。

图 91 给出了采用上述新方法确定的三种脆 性材料弹性模量 (空心符号表示),并与由 OP 方 法得到的结果 (实心符号)进行了对比。首先需 要注意的是,OP 方法的计算结果在较小的 h<sub>max</sub> 下表现出了随 h<sub>max</sub>增大而降低的趋势。这种降低 趋势在 Oliver 和 Pharr 的原始工作<sup>[2]</sup>中也观察到了 (图 15),导致这一降低的原因可以部分归结于预 标定面积函数在预测小位移条件下的接触面积时 存在的偏差 (图 77)。而采用新方法确定的弹性模 量基本表现为与 h<sub>max</sub> 无关。在大位移条件下,两 种方法得到的结果相互吻合,说明新方法和 OP 方法在确定材料力学性能方面具有彼此相当的精 度;而在小位移条件下,新方法显然比 OP 方法 具有明显的优势,从而进一步证明了上述面积函 数自标定方法的适用性。

![](_page_54_Figure_2.jpeg)

图 91 新方法确定的弹性模量 (空心符号) 与 OP 方法 测试结果 (实心符号) 的对比<sup>[189]</sup>

Fig. 91 Comparison between the elastic moduli determined with the new method (open symbols) and those obtained by OP method (solid symbols)<sup>[189]</sup>

图 89 - 图 91 所示的实验结果是通过分析连续刚度实验获得的 P-h曲线而得到的。为了进一步探讨新方法在分析准静态压痕实验数据方面的适应性,Gong等人又对石英玻璃(商用载玻片)、Y<sub>2</sub>O<sub>3</sub>稳定四方相 ZrO<sub>2</sub>(TZP)以及钢(洛氏硬度HRC为68.3的标准硬度块)分别进行了准静态压痕实验。实验选用了 5 个峰值载荷水平(10 mN、50 mN、100 mN、200 mN和400 mN)和4个不同的加载时间 $t_L$ (10 s、30 s、60 s和90 s),分别讨论了峰值载荷和加载速率( $P_{max}/t_L$ )对实验结果的影响。

图 92 为石英玻璃的测试结果。其中,图 92(a) 所示的弹性模量和硬度随峰值载荷变化规律与图 91 所示趋势一致, OP 方法在峰值载荷较低 (峰 值位移较小)的情况下高估了弹性模量和硬度, 而新方法则在整个峰值载荷范围内给出了较为一 致的数值。在峰值载荷较低且加载时间较长的情 况下,新方法给出的弹性模量和硬度稍稍有点降 低,这可能应该归因于压痕过程中发生的蠕变等 一些与时间有关的变形:较长的加载时间有可能 会使得加载过程中发生的蠕变形变量增大;而较 低的峰值载荷意味着较小的峰值位移,这种情况 下即使是较为微弱的蠕变形变与压痕弹-塑性相 比可能也不能忽略不计。图 92(b)所示结果进一步 证实了这一点:随着加载速率的提高,新方法测 得的弹性模量和硬度均呈逐渐增大趋势;当加载 速率提高到约 1 mN/s 之后, 弹性模量和硬度均 趋于不变。

对 TZP 和钢的压痕数据进行的分析也得到了 相似的结果(见图 93)。

图 94 对自标定接触面积 A<sub>N</sub> 与预标定接触面积 A<sub>OP</sub> 进行了对比。可以看出,对于所考虑的三种材料,在所考察的接触深度范围内,自标定接触面积 A<sub>OP</sub> 之间存在一些微弱的差异。图 94(a)表明, A<sub>N</sub> 和 A<sub>OP</sub> 随接触深度 h<sub>c</sub> 的变化关系相似,应该可以采用同一形式的函数加以描述,只不过二者的拟合系数具体取值会有所不同。而由图 94(b)则可以更清楚地看出:在

![](_page_54_Figure_9.jpeg)

#### 图 92 (a) 峰值载荷及(b) 加载速率对新方法确定的石英玻璃弹性模量及硬度(实心符号)的影响 (由 OP 方法确定的结果也以空心符号示于图中进行对比)<sup>[190]</sup>

Fig. 92 Effect of (a) peak load and (b) loading rate on the elastic modulus and hardness of silica glass determined with the new method (also shown are the results obtained with OP method for comparison)<sup>[190]</sup>

![](_page_55_Figure_0.jpeg)

![](_page_55_Figure_1.jpeg)

![](_page_55_Figure_2.jpeg)

![](_page_55_Figure_3.jpeg)

图 94 自标定接触面积  $A_N$  与预标定接触面积  $A_{OP}$  的比较<sup>[190]</sup> Fig. 94 Comparison between the self-calibrated contact area ( $A_N$ ) and the pre-calibrated contact area ( $A_{OP}$ )<sup>[190]</sup>

较小的压入深度(较小的接触面积)下, $A_N > A_{OP}$ ;随着压入深度的增大,二者间的偏差逐渐缩小。最值得关注的一个现象是 $A_N = A_{OP}$ 之间的偏差 $\Delta A$  明显与材料有关。结合图 92 和图 93 所示的性能测试结果可以推测,预标定面积不但在小位移条件下低估了接触面积,而且也没有考虑接触面积对材料的依赖性,这两方面的问题在自标定面积函数中都得到了较好的解决。

至此, Gong 等人通过一系列实验初步证实了 自标定面积函数的有效性和实用性。当然,这一 点还需要在今后的工作中借助于更多的数据加以 进一步的检验。

# 5 结 语

本文对纳米压痕实验数据分析中最常用 Oliver-Pharr方法进行了较为全面的评述。在详细 介绍了 OP 方法所涉及的基本理论及计算方法基 础上,本文针对纳米压痕技术在陶瓷材料弹性模 量和硬度测试中的应用,对可能影响 OP 方法测 试精度的各种因素进行了分析。

应该说, Oliver 和 Pharr 于 1992 年报道的工

作无疑是一项杰出工作,而两位学者于 2004 年对 这一工作的再度完善就完美地建立了迄今为止尚 无人逾越的一座丰碑。后续其他学者的所有相关 工作都无一例外地建立在这一工作的基础上。OP 方法在材料力学性能评价中也发挥出了越来越重 要的作用,成千上万的研究工作都在应用纳米压 痕技术和 OP 方法测定材料力学性能,甚至在一 些原本并不需要在纳米尺度上进行的性能表征工 作也经常借助于纳米压痕技术和 OP 方法进行。 这就足以说明了 OP 方法和 Oliver-Pharr 原创性 工作的价值。

但是,在结束本文之前,笔者还是想就纳米 压痕技术及 OP 方法谈几点个人的看法:

(1) 纳米压痕技术, 顾名思义是在纳米尺度 上进行实验, 进而在纳米尺度上对材料的力学行 为进行表征和评价。因此, 一些常规技术能够表 征的性能 (尤其是在微观尺度甚至宏观尺度下就 能够很好表征的性能) 事实上就不一定要借助于 纳米压痕技术了。比如说, 弹性模量完全可以借 助宏观的弯曲梁实验或拉伸试验进行测试, 评价 宏观的摩擦磨损磨蚀行为所需的硬度也完全可以 采用显微硬度计进行测试。纳米压痕技术测得的 是材料在纳米尺度上的力学响应, 在某些情况下 可能与微观或宏观力学响应并不一致。针对在块 体陶瓷材料中的应用而言, 严格意义上说, 纳米 压痕技术给出的测试结果仅仅是材料表面纳米 尺度上局部区域的性能, 而不是块体材料的宏观 性能。

(2)纳米压痕技术虽然号称"纳米",但在绝 大多数研究中,这个"纳米"并不意味着"高精 度"。必须意识到,纳米压痕仪机架柔度、热漂移、 接触面积、试样表面粗糙度及平行度等等因素所 引进的不确定性都在纳米尺度,在某些情况下甚 至可能与测试所考察的压入深度相当。因此,严 格意义上说,纳米压痕实验的"高精度"指的更 应该是纳米压痕仪操作者的"高精度",试样制备 过程及测试过程中任何与操作标准的微小偏差都 将导致实验结果显著的偏差。这应该是在分析和 使用纳米压痕实验数据及实验结果时必须仔细考 虑和面对的。

(3) 从理论上说, OP 方法是一个很精细的体 系。但从实践上说,这一方法似乎仍然存在着一 些难以解决的问题。本文已经从各个角度对影响 OP 方法精度的各种可能因素进行了分析。这里还 需要更进一步说明一点:OP 方法的基础是卸载曲 线的描述,也就是用幂函数式(8)对卸载数据进行 拟合以得到初始卸载斜率 S。从本文的讨论中可 以看出,这个数据拟合过程对于 OP 方法的精度 至关重要。然而,一方面,如图 38 所示,选择不 同区间的卸载数据进行拟合将得到不同的m值和 不同的卸载斜率;另一方面在 Oliver 和 Pharr 的 工作中并没有关于在这个拟合过程中如何选取数 据拟合区间的说明。如何通过数据拟合获得准确、 合理的m和S值以及不同数据区间得到的不同m 和S值对最终性能参数计算结果的影响如何,可 能是未来需要花大力气加以研究的问题。毕竟, 与m和S的不确定性相比,本文中讨论的其他 各种影响因素所导致的误差可能就都变得微不 足道了。

当然,上述仅为笔者个人观点。

#### 致 谢

中国硅酸盐学会特种陶瓷分会青年工作委员 会众多青年朋友对本文初稿提出了许多建设性的 意见和建议。本文引用的未公开发表数据分别由 中国科学院上海硅酸盐研究所蒋丹宇研究员、李 蕾女士及清华大学材料学院高阳女士协助测试。 在此一并表示致谢。

参考文献:

- [1] 张泰华. 微/纳米力学测试技术及其应用[M]. 北京: 机 械工程出版社, 2005.
- [2] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research, 1992, 7(6): 1564-1583.
- [3] LI X D, BHUSHAN B. A review of nanoindentation continuous stiffness measurement technique and its applications [J]. Materials Characterization, 2002, 48(1): 11-36.
- [4] OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation: advanced in understanding and refinements to methodology [J]. Journal of Materials Research, 2004, 19(1): 3-20.
- [5] ISO 14577-1-2015, Metallic materials: instrumented indentation test for hardness and materials parameters, Part 1: Test method (S).
- [6] CABIBBO M, RICCI P, CECCHINI R, et al. An international round-robin calibration protocol for nanoindentation measurements [J]. Micron, 2012, 43(2-3):

· 238 ·

215-222.

- [7] SCHUH C A. Nanoindentation studies of materials [J]. Materials Today, 2006, 9(5): 32-40.
- [8] KRELL A, SCHADLICH S. Nanoindentation hardness of submicrometer alumina ceramics [J]. Materials Science and Engineering A, 2001, 307(1-2): 172-181.
- [9] GONG J H, MIAO H Z, PENG Z J. Analysis of the nanoindentation data measured with a Berkovich indenter for brittle materials: effect of the residual contact stress [J]. Acta Materialia, 2004, 52(3): 785-793.
- [10] DÍEZ-PASCUAL A M, GÓMEZ-FATOU M A, ANIA F, et al. Nanoindentation in polymer nanocomposites [J]. Progress in Materials Science, 2015, 67: 1-94.
- [11] GIBSON R F. A review of recent research on nanoindentation of polymer composites and their constituents [J]. Composites Science and Technology, 2014, 105: 51-65.
- [12] EBENSTRIN D M, PRUITT L A. Nanoindentation of biological materials [J]. Nano Today, 2006, 1(3): 26-33.
- [13] LEWIS G, NYMAN J S. The use of nanoindentation for characterizing the properties of mineralize hard tissues: state-of-the art review [J]. Journal of Biomedical Materials Research B, 2008, 87B(1): 286-301.
- [14] SAHA R, NIX W D. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation [J]. Acta Materialia, 2002, 50(1): 23-38.
- [15] FISCHER-CRIPPS A C. Critical review of analysis and interpretation of nanoindentation test data [J]. Surface & Coatings Technology, 2006, 200(14): 4153-4165.
- [16] GOLOVIN Y I. Nanoindentation and mechanical properties of solids in submicro-volumes, thin near-surface layers, and films: A review [J]. Physics of the Solid State, 2008, 50(12): 2205-2236.
- [17] HAY J C, SUN E Y, PHARR G M, et al. Elastic anisotropy of  $\beta$ -silicon nitride whiskers [J]. Journal of the American Ceramic Society, 1998, 81(10): 2661-2669.
- [18] SAITOH H, NAMIOKA Y, SUGATA H, et al. Nanoindentation analysis of Al:ZnO epitaxial whiskers[J]. Japanese Journal of Applied Physics, 2001, 40(10): 6024-6028.
- [19] WANG M, JIN H J, KAPLAN D L, et al. Mechanical properties of electrospun silk fibers [J]. Macromolecules, 2004, 37(18): 6856-6564.
- [20] WENGER M P E, BOZEC L, HORTON M A, et al. Mechanical properties of collagen fibrils [J]. Biophysical Journal, 2007, 93(4): 1255-1263.

- [21] DAS K, RAY D, BANDYOPADHYAY N R, et al. Study of the properties of microcryatalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM [J]. Journal of Polymers and the Environment, 2010, 18(3): 355-363.
- [22] KAYA S, AKCAN D, OZTURK O, et al. Enhanced mechanical properties of yttrium doped ZnO nanoparticles as determined by instrumented indentation technique [J]. Ceramics International, 2018, 44(9): 10306-10314.
- [23] SEBASTIANI M, JOHANNS K E, HERBERT E G, et al. Measurement of fracture toughness by nanoindentation methods: recent advances and future challenges [J]. Current Opinion in Solid State & Materials Science, 2015, 19(6): 324-333.
- [24] HE L H, SWAIN M V. Nanoindentation derived stress-strain properties of dental materials [J]. Dental Materials, 2007, 23(7): 814-821.
- [25] KALIDINDI S R, PATHAK S. Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves [J]. Acta Materialia, 2008, 56(14): 3523-3532.
- [26] FISCHER-CRIPPS A C. A simple phenomenological approach to nanoindentation creep [J]. Materials Science and Engineering A, 2004, 385(1-2): 74-82.
- [27] WHEELER J M, ARMSTRONG D E J, HEINZ W, et al. High temperature nanoindentation: the state of the art and future challenges [J]. Current Opinion in Solid State & Materials Science, 2015, 19(6): 354-366.
- [28] SANCHEZ J M, EL-MANSY S, SUN B, et al. Cross-section nanoindentation: a new technique for thin film interfacial adhesion characterization [J]. Acta Materialia, 1999, 47(17): 4405-4413.
- [29] PHARR G M, STRADER J H, OLIVER W C. Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement [J]. Journal of Materials Research, 2009, 24(3): 653-666.
- [30] VACHHANI S J, DOHERTY R D, KALIDINDI S R. Effect of continuous stiffness measurement on the mechanical properties extracted using spherical nanoindentation [J]. Acta Materialia, 2013, 61(10): 3744-3751.
- [31] MERLE B, MAIER-KIENER V, PHARR G M. Influence of modulus-to-hardness ratio and harmonic parameters on continuous stiffness measurement during nanoindentation [J]. Acta Materialia, 2017, 134: 167-176.

· 239 ·

- [32] BERKOVICH E S. Three-faceted diamond pyramid for micro-hardness testing [J]. Industrial Diamond Review, 1951, 11: 129-132.
- [33] 张泰华,杨业敏. 纳米硬度技术的发展和应用[J]. 力 学进展, 2002, 21(3): 349-364.
  ZHANG T H, YANG Y M. Advances in Mechanics, 2002, 21(3): 349-364.
- [34] TRENKLE J C, PACKARD C E, SCHUH C A. Hot nanoindentation in inert environments [J]. Review of Scientific Instruments, 2010, 81(7): 073901.
- [35] WHEELER J M, OLIVER R A, CLYNE T W. AFM observation of diamond indenters after oxidation at elevated temperatures [J]. Diamond and Related Materials, 2010, 19(11): 1348-1353.
- [36] WHEELER J M, MICHLER J. Invited Article: Indenter materials for high temperature nanoindentation [J]. Review of Scientific Instruments, 2013, 84(10): 101301.
- [37] SCHUH C A, LUND A C, NIEH T G. New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling [J]. Acta Materialia, 2004, 52(20): 5879-5891.
- [38] CHEN C L, RICHTER A, THOMSON R C. Investigation of mechanical properties of intermetallic phases in multi-component Al-Si alloys using hot-stage nanoindentation [J]. Interrmetallics, 2010, 18(4): 499-508.
- [39] BEAKE B D, FOX-RABINOVICK G S. Progress in high temperature nanomechanical testing of coatings for optimising their performance in high speed machining [J]. Surface & Coatings Technology, 2014, 255(25): 102-111.
- [40] DUAN Z C, HODGE A M. High-temperature nanoindentation: New developments and ongoing challenges [J]. JOM, 2009, 61(12): 32-36.
- [41] WHEELER J M, ARMSTRONG D E J, HEINZ W, et al. High temperature nanoindentation: The state of the art and future challenges [J]. Current Opinion in Solid State & Materials Science, 2015, 19(6): 354-366.
- [42] JOHNSON K L. Contact Mechanics [M]. UK, Cambridge: Cambridge University Press, 1985.
- [43] HERTZ H. On the contact of elastic solids [J]. Journal Für Die Reine Und Angewandte Mathematik, 1882, 92: 156-171.
- [44] BOUSSINESQ J. Applications des Potentiels a L'étude de Équilibre et du Mouvement des Solides Élastiques [M]. France, Paris: Gauthier-Villars, 1885.
- [45] HERTZ H. Hertz's Miscellaneous Papers [M]. UK, London: Macmillan, 1896.

- [46] LAWN B R, WILSHAW T R. Indentation fracture: Principles and applications [J]. Journal of Materials Science, 1975, 10(6): 1049-1081,
- [47] LAWN B R. Indentation of ceramics with spheres: a century after Hertz [J]. Journal of the American Ceramic Society, 1998, 81(8): 1977-1994.
- [48] YOFFE E H. Elastic stress fields caused by indenting brittle materials [J]. Philosophical Magazine A, 1982, 46(4): 617-622.
- [49] SNEDDON I N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile [J]. International Journal of Engineering Science, 1965, 3(1): 47-57.
- [50] TABOR D. A simple theory of static and dynamic hardness [J]. Proceedings of the Royal Society A, 1948, 192: 247-274.
- [51] STILLWELL N A, TABOR D. Elastic recovery of conical indentations [J]. Proceedings of the Physical Society of London, 1961, 78(2): 169-179.
- [52] TERNOVSKII A P, ALEKHIN V P, SHORSHOROV M K, et al. Micromechanical testing of materials by depression [J]. Zavodsk Laboratory, 1973, 39: 1620-1624.
- [53] BULYCHEV S I, ALEKHIN V P, SHORSHOROV M K, et al. Determining Young's modulus from the indentor penetration diagram [J]. Zavodsk Laboratory, 1975, 41: 1137-1140.
- [54] PHARR G M, OLIVER W C, BROTZEN F R. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation [J]. Journal of Materials Research, 1992, 7(3): 613-617.
- [55] CHENG C M, CHENG Y T. On the initial unloading slope in indentation of elastic-plastic solids by an indenter with an axisymmetric smooth profile [J]. Applied Physics Letter, 1997, 71(18): 2623-2625.
- [56] FU G H. Effects of tip rounding on the fundamental relations used in the analysis of nanoindentation data [J]. Materials Letter, 2006, 60(29-31): 3855-3856.
- [57] FISCHER-CRIPPS A C. The sharpness of a Berkovich indenter [J]. Journal of Materials Research, 2010, 25(5): 927-934.
- [58] BOUZAKIS K D, PAPPA M, MALIARIS G, et al. Fast determination of parameters describing manufacturing imperfections and operation wear of nanoindenter tips [J]. Surface & Coatings Technology, 2013, 215: 218-223.
- [59] HAY J C, PHARR G M. A critical examination of the fundamental relations used in the analysis of

nanoindentation data [J]. Journal of Materials Research, 1999, 14(6): 2296-2305.

- [60] KING R B. Elastic analysis of some punch problems for a layered medium [J]. International Journal of Solids and Structures, 1987, 23(12): 1657-1664.
- [61] VLASSAK J J, NIX W D. Measuring the elastic properties of anisotropic materials by means of indentation experiments [J]. Journal of the Mechanics and Physics of Solids, 1994, 42(8): 1223-1245.
- [62] HENDRIX B C. The use of shape correction factors for elastic indentation measurements [J]. Journal of Materials Research, 1995, 10(2): 255-257.
- [63] LARSSON P L, GIANNAKOPOULOS A E, SÖDERLUND E, et al. Analysis of Berkovich indentation [J]. International Journal of Solids and Structures, 1996, 33(2): 221-248.
- [64] CHENG Y T, CHENG C M. Scaling approach to conical indentation in elastic-plastic solids with work hardening [J]. Journal of Applied Physics, 1998, 84(3): 1284-1291.
- [65] CHENG Y T, CHENG C M. Scaling relationships in conical indentation of elastic-perfectly plastic solids [J]. International Journal of Solids and Structures, 1999, 36(8): 1231-1243.
- [66] NEWEY D, WILKINS M A, POLLOCK H M. An ultra-low-load penetration hardness tester [J]. Journal of Physics E, 1982, 15(1): 119-122.
- [67] LOUBET J L, GEORGES J M, MARCHESINI O, et al. Vickers indentation curves of magnesium oxide (MgO)[J]. Journal of Tribology, 1984, 106: 43-48.
- [68] PETHICA J B, HUTCHINGS R, OLIVER W C. Hardness measurement at penetration depths as small as 20 nm [J]. Philosophical Magazine A, 1983, 48(4): 593-606.
- [69] OLIVER W C, HUTCHINGS R, PETHICA J B. Measurement of hardness at indentation depths as low as 20 nanometers [C] // BLAU P J, LAWN B R. Microindentation Techniques in Materials Science and Engineering, ASTM STP 889. USA, Philadelphia: American Society for Testing and Materials, 1986: 90-108.
- [70] DOERNER M F, NIX W D. A method for interpreting the data from depth-sensing indentation instruments [J]. Journal of Materials Research, 1986, 1(4): 601-609.
- [71] PAGE T F, OLIVER W C, MCHARGUE C J. The deformation behavior of ceramic crystals subjected to very low load (nano)indentations [J]. Journal of Materials Research, 1992, 7(2): 450-473.

- [72] BHUSHAN B. Depth-sensing nanoindentation measurement techniques and applications [J].
   Microsystem Technologies, 2017, 23: 1595-1649.
- [73] PHARR G M, BOLSHAKOV. Understanding nanoindentation unloading curves [J]. Journal of Materials Research, 2002, 17(10): 2660-2671.
- [74] SCHWARZER N. Elastic surface deformation due to indenters with arbitrary symmetry of revolution [J]. Journal of Physics D, 2004, 37(19): 2761-2772.
- [75] SCHWARZER N. Analysing nanoindentation unloading curves using Pharr's concept of the effective indenter shape [J]. Thin Solid Films, 2006, 494(1-2): 168-172.
- [76] HERRMANN M, RICHTER F. Determination of Young's modulus of thin films using the concept of the effective indenter [J]. Philosophical Magazine, 2011, 91(7-9): 1356-1369.
- [77] MERLE B, MAIER V, GOKEN M, et al. Experimental determination of the effective indentr shape and *ɛ*-factor for nanoindentation by continously measuring the unloading stiffness [J]. Journal of Materials Research, 2012, 27(1): 214-221.
- [78] MOTT B W. Micro-indentation hardness test [M]. UK, London: Butterworths Scientific, 1956.
- [79] BÜCKLE H. Progress in micro-indentation hardness testing [J]. Metallurgical Reviews, 1959, 4: 49-100.
- [80] CHAUDHRI M M. Some concerns about the current interpretation and analyses of indentation unloading *P-h* curves highlighted with Young's modulus studies of single crystals of MgO (100) [J]. Journal of Applied Physics, 2018, 124(9): 095107.
- [81] SHUMAN D J, COSTA A L M, ANDRADE M S. Calculating the elastic modulus from nanoindentation and microindentation reload curves [J]. Materials Characterization, 2007, 58(4): 380-389.
- [82] CHUDOBA T, RICHTER F. Investigation of creep behavior under load during indentation experiments and its influence on hardness and modulus results [J]. Surface and Coating Technology, 2001, 148(2-3): 191-198.
- [83] MENCIK J, SWAIN M V. Errors associated with depth-sensing microindentation tests [J]. Journal of Materials Research, 1995, 10(6): 1491-1501.
- [84] 张泰华. 影响纳米压入测试结果的因素[J]. 实验力学, 2004, 19(4): 437-442.
  ZHANG T H. Journal of Experimental Mechanics, 2004, 19(4): 437-442.
- [85] SIMOES M I, FERNANDES J V, CAVALEIRO A. The

influence of experimental parameters on hardness and Young's modulus determination using depth-sensing testing [J]. Philosophical Magazine, 2002, 82(10): 1911-1919.

- [86] 关振铎,张中太,焦金生.无机材料物理性能(第二版)[M].北京:清华大学出版社,2011.
- [87] MAHMUDI R, REZAEE-BAZZAZ. Superplastic indentation creep of Sn-Pb-Sb peritectic [J]. Materials Letters, 2005, 59(13): 1705-1708.
- [88] GOODALL R, CLYNE T W. A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature [J]. Acta Materialia, 2006, 54(20): 5489-5499.
- [89] SCHWAIGER R, MOSER B, DAO M, et al. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel [J]. Acta Materialia, 2003, 51(17): 5159-5172.
- [90] HAGHSHENAS M, WANG Y, CHENG Y T, et al. Indentation-based rate-dependent plastic deformation of polycrystalline pure magnesium [J]. Materials Science and Engineering A, 2018, 716: 63-71.
- [91] SORT J, FORNELL J, LI W, et al. Influence of the loading rate on the indentation response of Ti-based metallic glass [J]. Journal of Materials Research, 2009, 24(3): 918-925.
- [92] BHATTACHARYYA A, SINGH G, PRASAD K E, et al. On the strain rate sensitivity of plastic flow in metallic glasses [J]. Materials Science and Engineering A, 2015, 625: 245-251.
- [93] BHATTACHARYA M, CHAKRABORTY R, DEY A, et al. New observations in micro-pop-in issues in nanoindentation of coarse grain alumina [J]. Ceramics International, 2013, 39(2): 999-1009.
- [94] ALAO A R, YIN L. Loading rate effect on the mechanical behavior of zirconia in nanoindentation [J]. Materials Science and Engineering A, 2014, 619: 247-255.
- [95] MAITI P, EQBAL A, BHATTACHARYA M, et al. Micro pop-in issues in nanoindentation behavior of 10 ZTA ceramics [J]. Ceramics International, 2019, 45(7): 8204-8215.
- [96] SAMUEL R, CHANDRASEKAR S, FARRIS T N, et al. Effect of residual stresses on the fracture strength of ground ceramics [J]. Journal of the American Ceramic Society, 1989, 72(10): 1960-1966.
- [97] DIAZ O G, LUNA G G, LIAO Z R, et al. The new challenges of machining ceramic matrix composites

(CMCs): Review of surface integrity [J]. International Journal of Machine Tools & Manufacture., 2019, 139: 24-36.

- [98] TSUI T Y, OLIVER W C, PHARR G M. Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy [J]. Journal of Materials Research, 1996, 11(3): 752-759.
- [99] BOGJI M S, BISWAS S K, PETHICA J B. Effect of roughness on the measurement of nanohardness-a computer simulation study [J]. Applied Physics Letters, 1997, 71(8): 1059-1061.
- [100] JACKSON R L, STREATOR J L. A multi-scale model for contact between rough surfaces [J]. Wear, 2006, 261(11): 1337-1347.
- [101] BOUZAKIS K D, MICHAILIDIS N, HADJIYIANNIS S, et al. The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coatings stress-strain laws by nanoindentation [J]. Materials Characterization, 2003, 49(2): 149-156.
- [102] QASMI M, DELOBELLE. Influence of the average roughness  $R_{\rm ms}$  on the precision of the Young's modulus and hardness determination using nanoindentation technique with a Berkovich indenter [J]. Surface & Coatings Technology, 2006, 201(3-4): 1191-1199.
- [103] MILLER M, BOBKO C, VANDAMME M, et al. Surface roughness criteria for cement paste nanoindentation [J]. Cement and Concrete Reserch, 2008, 38(4): 467-476.
- [104] HAN S M, SAHA R, NIX W D. Determining hardness of thin films in elastically mismatched film-on-substrate systems using nanoindentation [J]. Acta Materialia, 2006, 54(6): 1571-1581.
- [105] JIANG W G, SU J J, FENG X Q. Effect of surface roughness on nanoindentation tests of thin films [J]. Engineering Fracture Mechanics, 2008, 75(17): 4965-4972.
- [106] MARX V, BALKE H. A critical investigation of the unloading behavior of sharp indentation [J]. Acta Materialia, 1997, 45(9): 3791-3800.
- [107] TRANCHIDA D, PICCAROO S. On the use of the nanoindentation unloading curve to measure the Young's modulus of polymer on a nanometer scale [J]. Macromolecular Rapid Communications, 2005, 26(22): 1800-1804.
- [108] JHA K K, SUKSAWANG N, LAHIRI D, et al. Energy-based analysis of nanoindentation curves for cementitious materials [J]. ACI Materials Journal, 2012,

· 242 ·

109(1): 81-90.

- [109] KOSSMAN S, COOREVITS T, IOST A, et al. A new approach of the Oliver and Pharr model to fit the unloading curve from instrumented indentation testing [J]. Journal of Materials Research, 2017, 32(12): 2230-2240.
- [110] GONG J H, WU J J, GUAN Z D. Analysis of the indentation size effect on the apparent hardness for ceramics [J]. Materials Letters, 1999, 38(3): 197-201.
- [111] MARSHALL D B, LAWN B R. Residual stress effects in sharp contact cracking: Part I, indentation fracture mechanics [J]. Journal of Materials Science, 1979, 14: 2001-2012.
- [112] LAWN B R, EVANS A G, MARSHALL D B. Elastic/plastic indentation damage in ceramics: The median/radial crack system [J]. Journal of the American Ceramic Society, 1980, 63(9-10): 574-581.
- [113] GONG J H, LI Y. An energy-balance analysis for the size effect in low-load hardness testing [J]. Journal of Materials Science, 2000, 35(1): 209-213.
- [114] FROHLICH F, GRAU P, GRELLMANN W. Performance and analysis of recording microhardness testing [J]. Physica Status Solidi A 1977, 42: 79-89.
- [115] MICHELS B D, FRISCHAT G H. Microhardness of chalcogenide glasses of the system Se-Ge-As [J]. Journal of Materials Science, 1982, 17: 329-334.
- [116] HIRAO K, TOMOZAWA M. Microhardness of SiO<sub>2</sub> glass in various environments [J]. Journal of the American Ceramic Society, 1987, 70(7): 497-502.
- [117] SAKAI M. Energy principle of the indentation-induced inelastic surface deformation and hardness of brittle materials [J]. Acta Metallurgica Et Materialia, 1993, 41(6): 1751-1758.
- [118] BEEGAN D, CHOWDHURY S, LAUGIER M T. Work of indentation methods for determining copper film hardness [J]. Surface & Coatings Technology, 2005, 192(1): 57-63.
- [119] CHEN J, BULL S J. Relation between the ratio of elastic work to the total work of indentation and the ratio of hardness to Young's modulus for a perfect conical tip [J]. Journal of Materials Research, 2009, 24(3): 590-598.
- [120] ATTAF M T. New ceramics related investigation of the indentation energy concept [J]. Materials Letters, 2003, 57(30): 4684-4693.
- [121] ATTAF M T. Step by step building of a model for the Berkovich indentation cycle [J]. Materials Letters, 2004, 58(3/4): 507-512.
- [122] ATTAF M T. New formulation of the nanomechanical

quantities using the  $\beta$ -material concept and the indentation function [J]. Materials Letters, 2004, 58(6): 889-894.

- [123] JHA K K, SUKSAWANG N, AGARWAL A. Analytical approach for the determination of nanomechanical properties for metals [C] // PROULX T. MEMS and Nanotechnology, Vol. 4. Switzerland: Springer Nature, 2011: 65-73.
- [124] JHA K K, SUKSAWANG N, LAHIRI D, et al. Evaluating initial unloading stiffness from elastic work-of-indentation measured in a nanoindentation experiment [J]. Journal of Materials Research, 2003, 28(6): 789-797.
- [125] NGAN A H W, TANG B. Viscoelastic effects during unloading in depth-sensing indentation [J]. Journal of Materials Research, 2002, 17(10): 2604-2610.
- [126] OYEN M L, COOK R F. Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials [J]. Journal of Materials Research, 2003, 18(1): 139-150.
- [127] HAINSWORTH S V, CHANDLER H W, PAGE T F. Analysis of nanoindentation load-displacement curves [J]. Journal of Materials Research, 1996, 11(8): 1987-1995.
- [128] GONG J H, PENG Z J, MIAO H Z. Analysis of the nanoindentation load-displacement curves measured on high-purity fine-grained alumina [J]. Journal of the European Ceramic Society, 2005, 25(5): 649-654.
- [129] YAN M, MORI T, ZOU J, et al. Microstructures and mechanical properties of  $Ce_{1-x}Ca_xO_{2-y}$  (x = 0.05, 0.1, 0.2) with different sintering temperatures [J]. Journal of the European Ceramic Society, 2010, 30(3): 669-675.
- [130] CHEN Z W, BRANDON N. Inkjet printing and nanoindentation of porous alumina mulitlayers [J]. Ceramics International, 2016, 42(7): 8316-8324.
- [131] SILVA A P, BOOTH F, GARRIDO L, et al. Young's modulus and hardness of multiphase CaZrO<sub>3</sub>-MgO ceramics by micro and nanoindentation [J]. Journal of the European Ceramic Society, 2018, 38(4): 2194-2201.
- [132] SCHUH C A, LUND A C. Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation [J]. Journal of Materials Research, 2004, 19(7): 2152-2158.
- [133] LORENZ D, ZECKZER A, HILPERT U, et al. Pop-in effect as homogeneous nucleation of dislocations during nanoindentation [J]. Physics Review B, 2003, 67(17): 172101.
- [134] SCHUH C A, NIEH T G. A nanoindentation study of

serrated flow in bulk metallic glasses [J]. Acta Materialia, 2003, 51(1): 87-99.

- [135] GUICCIARDI S, MELANDRI C, MONTEVERDE F T. Characterization of pop-in phenomena and indentation modulus in a polycrystalline ZrB<sub>2</sub> ceramic [J]. Journal of the European Ceramic Society, 2010, 30(4): 1027-1034.
- [136] LILLEODDEN E T, NIX W D. Microstructural length-scale effects in the nanoindentation behavior of thin gold films [J]. Acta Materialia, 2006, 54(6): 1583-1593.
- [137] LIAN J, GARAY J E, WANG J L. Grain size and grain boundary effects on the mechanical behavior of fully stabilized zirconia investigation by nanoindentation [J]. Scripta Materialia, 2007, 56(12): 1095-1098.
- [138] YANG B, VEHOFF H. Dependence of nanohardness upon indentation size and grain size: a local examination of the interaction between dislocations and grain boundaries [J]. Acta Materialia, 2007, 55(3): 849-856.
- [139] OHMURA T, MATSUOKA S, TANAKA K, et al. Nanoindentation load-displacement behavior of pure face centered cubic metal thin films on a hard substrate [J]. Thin Solid Films, 2001, 385(1-2): 198-204.
- [140] DOMNICH V, GOGOTSI Y, DUB S. Effect of phase transformation on the slope of the unloading curve in the nanoindentation of silicon [J]. Applied Physics Letter, 2000, 76(16): 2214-2216.
- [141] AHN T H, OH C S, KIM D H, et al. Investigation of stain-induced martensitic transformation in metastable austenite using nanoindentation [J]. Scripta Materialia, 2010, 63(5): 540-543.
- [142] FIELD J S, SWAIN M V, DUKINO R D. Determination of fracture toughness from the extra penetration produced by indentation-induced pop-in [J]. Journal of Materials Research, 2003, 18(6): 1412-1419.
- [143] YEAP K B, ZENG K Y, CHI D Z. Determination the interfacial toughness of low-k films on Si substrate by wedge indentation: further studies [J]. Acta Materialia, 2008, 56(5): 977-984.
- [144] HERVAS I, MONTAGNE A, GORP A V, et al. Fracture toughness of glasses and hydroxyapatite: a comparison study of 7 methods by using Vickers indentation [J]. Ceramics International, 2016, 42(11): 12740-12750.
- [145] SCHOLZ T, SCHNEIDER G A, MUNOZ-SALDANA J, et al. Fracture toughness from submicron derived indentation cracks [J]. Applied Physics Letters, 2004, 84(16): 3055-3057.
- [146] EBISU T, HORIBE S. Analysis of the indentation size

effect in brittle materials from nanoindentation load-displacement curve [J]. Journal of the European Ceramic Society, 2010, 30(12): 2419-2426.

- [147] BRADBY J E, WILLIAMS J S, WONG-LEUNG J, et al., Mechanical deformation in silicon by micro-indentation[J]. Journal of Materials Research, 2001, 16(5): 1500-1507.
- [148] BRADBY J E, WILLIAMS J S, SWAIN M V. In situ electrical characterization of phase transformations in Si during indentation [J]. Physical Review B, 2003, 67(8): 085205.
- [149] CHENG L, ZHANG L C. Deformation mechanisms at pop-out in monocrystalline silicon under nanoindentation [J]. Acta Materialia, 2009, 57(7): 2148-2153.
- [150] HAY J. Introduction to instrumented indentation testing[J]. Experimental Technique, 2010, 33(6): 66-72.
- [151] HAY J A, PHARR G M. Critical issues in measuring the mechanical properties of hard films on soft substrates by nanoindentation techniques [R] // ORNL/CP-95655. USA, Oak Ridge: Oak Ridge National Laboratory, 1998.
- [152] MCELHANEY K W, VLASSAK J J, NIX W D. Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments
  [J]. Journal of Materials Research, 1998, 13(5): 1300-1306.
- [153] BOLSHAKOV A, PHARR G M. Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques [J]. Journal of Materials Research, 1998, 13(4): 1049-1058.
- [154] CHENG Y T, CHENG C M. Relationships between hardness, elastic modulus, and the work of indentation [J]. Applied Physics Letters, 1998, 73(5): 614-616.
- [155] CHENG Y T, LI Z Y, CHENG C M. Scaling, relationship for indentation measurements [J]. Philosophical Magazine A, 2002, 82(10): 1821-1829.
- [156] JOSLIN D L, OLIVER W C. A new method for analyzing data from continuous depth-sensing microindentation tests [J]. Journal of Materials Research, 1990, 5(1): 123-126.
- [157] KESE K O, LI Z C, BERGMAN B. Method to account for true contact area in soda-lime glass during nanoindentation with the Berkovich tip [J]. Materials Science and Engineering A, 2005, 404(1/2): 1-8.
- [158] HAN C F, LIN J F. A new model developed to evaluate the contact area arising during nanoindentation tests with pileup behavior of metal materials [J]. IEEE Transactions on Nanotechnology, 2008, 7(3): 256-265.

- [159] ZHANG Y C, SHI T L, TANG Z R, et al. An improved method to estimate Young's modulus of Zr-based BMGs accounting for pile-up during nanoindentation [J]. Journal of Non-Crystalline Solids, 2015, 427: 20-25.
- [160] OLIVER W C. Alternative technique for analyzing instrumented indentation data [J]. Journal of Materials Research, 2001, 16(11): 3202-3206.
- [161] ZENG K Y, ROWCLIFFE D. Analysis of penetration curves produced by sharp indentations on ceramic materials [J]. Philosophical Magazine A, 1996, 74(5): 1107-1116.
- [162] LOUBET J L, GEORGES J M, MEILLE. Vickers indentation curves of elastoplastic materials [C] // BLAU PJ, LAWN BR. Microindentation Techniques in Materials Science and Engineering. USA, Philadelphia: American Society for Testing and Materials, 1986: 72-89.
- [163] JHA K K, SUKSAWANG N, AGARWAL A. Analytical method for the determination of indenter constants used in the analysis of nanoindentation loading curves [J]. Scripta Materialia, 2010, 63(3): 281-284.
- [164] MALZBENDER J, WITH G D, TOONDER J D. The  $P-h^2$  relationship in indentation [J]. Journal of Materials Research, 2000, 15(5): 1209-1212.
- [165] TROYON M, HUANG L. Critical examination of the two-slope method in nanoindentation [J]. Journal of Materials Research, 2005, 20(8): 2194-2198.
- [166] PENG Z J, GONG J H, MIAO H Z. On the description of indentation size effect in hardness testing for ceramics: analysis of the nanoindentation data [J]. Journal of the European Ceramic Society, 2004, 24(8): 2193-2201.
- [167] PHARR G M, HERBERT E G, GAO Y F. The indentation size effect: a critical examination of experimental observations and mechanistic interpretations [J]. Annual Review of Materials Research, 2010, 40(1): 271-292.
- [168] SUN S, ZHENG S, BELL T, et al. Indenter tip radius and load frame compliance calibration using nanoindentation loading curves [J]. Philosophical Magazine Letters, 1999, 79(9): 649-658.
- [169] SAWA T, TANAKA K. Simplified method for analyzing nanoindentation data and evaluating performance of nanoindentation instruments [J]. Journal of Materials Research, 2001, 16(11): 3084-3096.
- [170] SUGANUMA M, SWAIN M V. Simple method and critical comparison of frame compliance and indenter area function for nanoindentation [J]. Journal of Materials Research, 2004, 19(12): 3490-3502.

- [171] JAMAL M, MORGAN. Materials characterization: I, contact area of the Berkovich indenter for nanoindentation tests [J]. International Journal of Advanced Manufacturing Technology, 2017, 92(1-4): 361-370.
- [172] JAKES J E. Improved methods for nanoindentation Berkovich probe calibrations using fused silica [J]. Journal of Materials Science, 2018, 53(7): 4814-4827.
- [173] GAO C, LIU M. Instrumented indentation of fused silica by Berkovich indenter [J]. Journal of Non-Crystalline Solids, 2017, 475: 151-160.
- [174] DUAN Y B, JIANG D Y, HU J. Determination of the load-independent hardness by analyzing the nanoindentation loading curves: a case study on fused silica [J]. Journal of Advanced Ceramics, 2019, 8(4): 583-586.
- [175] LOUBET J L, BAUER M, TONCK A, et al. Nanoindentation with a surface force apparatus [C] // NASTASI M, PARKIN D M, GLEITER H. Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures. The Netherlands, Dordrecht: Kluwer Academic Publishers, 1993: 429-447.
- [176] BEC S, TONCK A, GEORGES J M, et al. Improvements in the indentation method with a surface force apparatus[J]. Philosophical Magazine A, 1996, 74(5): 1061-1072.
- [177] THURN J, COOK R F. Simplified area function for sharp indenter tips in depth-sensing indentation [J]. Journal of Materials Research, 2002, 17(5): 1143-1146.
- [178] BEI H, GEORGE E P, HAY J L, et al. Influence of indenter tip geometry on elastic deformation during nanoindentation [J]. Physical Review Letters, 2005, 95(4): No. 045501.
- [179] ANTUNES J M, CAVALEIRO A, MENEZES L F, et al. Ultra-microhardness testing procedure with Vickers indenter [J]. Surface & Coatings Technology, 2002, 149(1): 27-35.
- [180] BERLA L A, ALLEN A M, HAN S M, et al. A physically based model for indenter shape calibration for nanoindentation [J]. Journal of Materials Research, 2010, 25(4): 735-745.
- [181] CHICOT D, N'JOCK M Y, PUCHI-CABRERA E S, et al. A contact area function for Berkovich nanoindentation: application to hardness determination of a TiHfCN thin film [J]. Thin Solid Films, 2014, 558: 259-266.
- [182] IKEZAWA K, MARUYAMA. Sharp tip geometry and its effect on hardness in nanoindentation experiments [J]. Journal of Applied Physics, 2002, 91(12): 9689-9596.

- [183] CAMPBELLOVA A, VALTR M, ZUDA J, et al. Traceable measurements of small forces and local mechanical properties [J]. Materials Science & Technology, 2011, 22(9): 094007.
- [184] HANG W, ZHOU L, SHIMIZU J, et al. A robust procedure of data analysis for micro/nano indentation [J]. Precision Engineering, 2013, 37(2): 408-411.
- [185] CECH Z, HAUSILD P, KOVARIK O, et al. Examination of Berkovich indenter tip bluntness [J]. Materials & Design, 2016, 109: 347-353.
- [186] CHUDOBA T. Measurement of hardness and Young's modulus by nanoindentation [C] // CAVALEIRO A, DE HOSSEN J T M. Nanostructured Coatings. USA, New York: Springer, 2006: 216-260.
- [187] LIU S, GU Y, HUANG H. A new tip area function for instrumented nanoindentation at extremely small contact depths [J]. Materials Science and Engineering A, 2011, 528(27): 7948-7951.
- [188] JIA Y F, CUI Y Y, XUAN F Z, et al. Comparison between single loading-unloading indentation and continuous stiffness indentation [J]. RSC Advances, 2017, 7(57): 35655-35665.

- [189] GONG J H, DENG B, JIANG D Y. Description of the nanoindentation unloading curves with a universal function: theoretical consideration and applications to brittle ceramics [J]. Materials Chemstry and Physics, 2020, 251: 123165.
- [190] GONG J H, DENG B, JIANG D Y. Self-calibration of area function for mechanical property determination with nanoindentation tests [J]. Journal of Materials Science, 2020, 55(33): 16002-16017.
- [191] LAWN B R, HOWES V R. Elastic recovery at hardness indentation [J]. Journal of Materials Science, 1981, 16(10): 2745-2572.
- [192] MARSHALL D B, NOMA T, EVANS A G. A simple method for determining elastic-modulus-to hardness relation using Knoop indentation measurements [J]. Journal of the American Ceramic Society, 1982, 68(10): c175-c176.
- [193] CONWAY J C. Determination of hardness to elastic modulus to hardness ratios using Knoop indentation measurements and a model based on loading and reloading half-cycles [J]. Journal of Materials Science, 1986, 21(7): 2525-2527.

# 补充材料

# Berkovich 压头的几何特征

Berkovich 压头为一个三棱锥形,如图 S1 所示 (左上角为 Berkovich 压头的原子力显微镜图像): A 为压头端部,三个面间的夹角均为 120°,三个面与三棱锥体轴线 AO 间的夹角 ( $\angle$ OAE) 均为 65.3°,三 条棱与三棱锥体轴线 AO 间的夹角 ( $\angle$ OAC) 均为 77.05°。根据这一构型可以推导出接触面积 A 与压入 深度  $h_c$ 之间的理论关系为 A = 24.5 $h_c^2$ ,而三角形底面的边长与棱锥高度之比为 7.53。

在大多数相关的理论研究中,通常将 Berkovich 压头等效模拟为一个半锥角为 $\psi$ 的等效圆锥形压头。 假定相同接触深度下 Berkovich 压头和等效圆锥形压头产生了相同的接触面积,即可以得到 Berkovich 压 头的等效半锥角为:  $\psi$ = 70.32°。

![](_page_64_Figure_17.jpeg)

图 S1 Berkovich 压头几何形状 Fig. S1 Geometry of a Berkovich indenter